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1 Introduction

More than 2 billion people still do not have safe drinking water at home. The costs of
this deprivation are staggering. Drinking contaminated water causes approximately 2 billion
cases of diarrhea and half a million deaths among children under 5 annually, making it the
5th-leading driver of child mortality worldwide (WHO, UNICEF, World Bank, 2022).1 Nor
is this public health crisis close to being solved, with the UN estimating that achieving
universal access to clean water by 2030 will require the pace of drinking water improvement
to accelerate six-fold, even as climate change is exacerbating water scarcity, leaving billions of
people newly vulnerable to water-borne disease (United Nations, 2022; World Bank, 2016).2

The aspirational “gold standard” is universal access to clean water at home, delivered
through pipes and taps. Piped drinking water is not a new technology — the United Kingdom
has required that new houses have clean piped water since the passage of the Public Health
Act of 1875 — and the dramatic expansion of purified water delivered to homes through
pipes in developed countries was one of the greatest public health achievements of the 19th
and 20th centuries (Alsan and Goldin, 2019).3 However, nearly 150 years on, less than 30%
of the overall population in low-income countries — and only 14% of the rural population —
has access to clean water at home (WHO, UNICEF, 2024). Moreover, lab testing reveals that
piped water in low-income countries is often just as contaminated as untreated surface water
(World Bank, 2017). In 2021, the US Centers for Disease Control and Prevention identified
only 58 countries worldwide where tap water is safe for drinking. This list excludes most
of Asia (including India and China), much of Central and South America, and all of Sub-
Saharan Africa (Centers for Disease Control and Prevention, 2021).4

These facts establish two goals for economists. The first is to evaluate improved solutions
that bring us closer to universal safe drinking water. The second is to quantify how much
the poor value clean water in order to inform the optimal allocation of limited state funds.

This paper contributes on both fronts. We use a cluster-randomized field trial covering
about 60,000 households in 120 villages in rural Odisha in India, to evaluate the demand for
drinking water provided using a new approach — decentralized water treatment combined

1For a sense of scale, the annual losses in disability-adjusted life years from unclean drinking water well
exceed those from the first year of the global COVID pandemic.

2The costs of these necessary investments are substantial: achieving global universal clean water and
sanitation access by 2030 is expected to require increasing annual spending by between $131 and $141 billion
(World Bank, 2024).

3As of 2022, 94.3% of the population in high-income countries had “safely-managed” drinking water, de-
fined as having an improved water source located on the premises, with water that is free from contamination
is available when needed (WHO, UNICEF, 2024).

4Prior work found that in India’s National Capital Region, one of the most developed parts of the country,
60% of piped water samples were unfit to drink (Jalan and Somanathan, 2008).
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with home delivery in sealed, reusable containers. We show that this alternative could sig-
nificantly improve access and we use the experiment to recover direct measures of household
valuation for clean water.

Our experiment adds to a growing body of work in the economics literature that has
both studied options to improve the take-up and efficacy of piped water (Galiani, Gertler
and Schargrodsky, 2005; Gamper-Rabindran, Khan and Timmins, 2010; Devoto et al., 2012;
Szabó, 2015; dos Santos and Guidetti, 2024), and evaluated cheaper alternatives suitable
for low-income countries. The approach that has arguably gained the most traction has
been point-of-collection or point-of-use treatment using chlorine tablets or solution. A rich
body of evidence suggests that chlorine-based water treatment is both effective at improving
health and extremely cheap (Kremer et al., 2011b; Luoto et al., 2011; Dupas et al., 2016;
Null et al., 2018; Haushofer et al., 2021; Dupas et al., forthcoming). These studies and others
are summarized in a recent review (Clasen et al., 2015) and meta-analysis (Kremer et al.,
2023).5

Yet despite its benefits, point-of-use/collection treatment has proved insufficient to fully
solve the clean water access problem in low-income countries. The Kremer et al. (2023)
meta-analysis reports average point-of-use take-up rates of just 46%. Crucially, low demand
for chlorine tablets or solutions is not due to monetary costs: even at zero price, their usage
has been well below universal access.6 Moreover, many households who do obtain chlorine do
not ultimately use it to treat their drinking water.7 As a result, although both piped water
and point-of-use chlorine have increased clean water access somewhat, overall progress is far
slower than we might wish, lagging population growth in many parts of the world. Indeed,
the WHO estimates that the number of people without clean water in low-income countries
increased by 197 million between 2000 and 2022 (WHO, UNICEF, 2024).

The intervention we study (home delivered treated water) provides a third option. Private
sector variants of this approach are gaining increasing traction, serving a growing segment
of households in urban slums and rural areas who are willing to pay for potable water

5A smaller number of papers measure the effectiveness of alternative home treatment methods, such as
water filtration (Berry, Fischer and Guiteras, 2020) or solar disinfection (Conroy et al., 1996).

6Non-monetary costs include unpleasant taste (Jeuland et al., 2016; Crider et al., 2018; Puget et al.,
2010; Smith et al., 2021; Dupas et al., 2016), and the inconvenience and cognitive burden of treating water
at home. Point-of-collection treatment has been found to also face contamination risks associated with
households collecting and transporting their own water (Kremer et al., 2011b).

7These results are very consistent across contexts. Low initial take-up at low or zero prices has been
documented in Bangladesh (Luoto et al., 2011), Malawi (Dupas et al., forthcoming), and Kenya (Null
et al., 2018), while meaningful gaps between initial take-up and follow-up chlorine usage has been shown in
Bangladesh (Luoto et al., 2011), Kenya (Dupas et al., 2016), and Zambia (Ashraf, Berry and Shapiro, 2010).
In our own data, only 3.6% of representative control-group households report using chlorine to treat water
in an average survey round, even though chlorine is widely available and very cheap.
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(Cohen and Ray, 2018; Advani et al., 2011; Brown et al., 2011; Daly et al., 2021). Between
2005 and 2015, usage of privately-supplied clean water in Brazil, China, India, Indonesia,
Mexico, and Thailand increased by 175% (Cohen and Ray, 2018). Yet despite evident latent
interest, to our knowledge there exists no rigorous evidence quantifying the demand for low-
cost interventions that directly supply safe water — as distinct from point-of-use treatment
options — to the rural poor.

Our study location, Odisha, is one of the poorest states in India, and has low levels of
safe drinking water access. We conducted our study in partnership with a private company
operating in rural Odisha. Section 2 provides more detail on our study setting and on how
water was treated and delivered to the home. The experiment, which we describe in detail
in Section 3, had three treatment arms: (i) a ‘Prices’ regime where water was sold at varying
prices through randomized household-specific discounts, (ii) a ‘Free Ration’ regime where
households could order a set amount of water per month for free, and (iii) an ‘Exchangeable
Entitlement’ regime, where households could either order clean water for free or, by forgoing
an order, receive cash rebates of varying amounts for every unused unit of their monthly
entitlement. Control households could also buy water, at the prevailing (high) price that
was in force prior to the experiment. We analyze this experiment using rich administrative
data on water orders and several household surveys, which we describe in Section 4.

Our first main finding, documented in Section 5, is that home delivery of clean water
works well to expand clean water access. We find that take-up of clean water at low prices
is nearly universal and is sustained over the experiment duration. Over 90% of households
order water when it is free. Take-up is similarly high at low prices: at our lowest price of
INR 0.14 / litre, take-up is about 89%. Strikingly, the demand for home-delivered water
is high even though households have access to cheap chlorine solution in local stores and
about 34% of our sample report having access to piped water at some point during the
experiment. Home delivery of clean water thus overcomes take-up ceilings documented in
other water-treatment approaches (Dupas et al., forthcoming).

As we might expect, total demand goes down as prices go up. However, this variation
stems largely from differences in take-up and not from differences in the amounts ordered
conditional on take-up. Across all treatment arms and all prices, we find that if a household
chooses to order water at all, they do so in substantial quantities, sufficient to fulfill all or
most of their drinking water needs, based on conventional benchmarks of 1.5–2 litres per
day per person. For households choosing to order, demand is also stable over time, unlike
prior evidence on chlorine-based water treatment (Ashraf, Berry and Shapiro, 2010; Berry,
Fischer and Guiteras, 2020; Dupas et al., 2016). Interestingly, demand is not unbounded
even when water is free. Our ration was generous enough to exceed the likely drinking water
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needs of most households. Although households order more water when it is free than under
status-quo pricing, the ration does not bind. This suggests that a policy to provide free
drinking water would generate limited waste.8

The patterns of demand we observe are consistent with informed consumers seeking to
replace most of their drinking water needs with home-delivered clean water, with consequent
time savings and health benefits. The latter are well documented in the literature (e.g.,
Kremer et al. (2023)) and as corroboration, we estimate local average treatment effects
showing that clean water access reduces self-reported sickness by 23 to 62 percent, and leads
to meaningful reductions in missed work due to illness. Our survey evidence also shows that
treated households also spend meaningfully less time collecting water.

Our second main finding is that households value clean water highly. Because some
households in our intervention directly trade off money and clean water, we are able to derive
two incentivized valuation metrics from our experiment: a willingness-to-pay (WTP) measure
from the prices arm, and a (bounded) measure of willingness-to-accept (WTA) derived from
a household’s choice to forgo cash in lieu of water in the exchangeable entitlement arm.
Measuring both is substantively important in our setting.

WTP is the standard measure of valuation, necessary for a Kaldor-Hicks evaluation of
public goods provision absent market failures. However, revealed preference measures of
WTP can be hard to interpret because they may be biased downwards by various market
failures (Greenstone and Jack, 2015). Even in the absence of market failures or behavioral
biases, theory suggests that in cases where a good (in this case, clean water) is both highly
valued and has no good substitutes, WTA can (significantly) exceed WTP (Hanemann,
1991). The WTA is also directly relevant for a budget-constrained policy-maker. Given the
presence of large, state-sponsored cash transfers to the poor in developing-country settings,
including our own (Banerjee et al., forthcoming; Niehaus and Suri, 2024), it is useful to know
whether households would prefer to (partially) swap existing cash transfer entitlements for
clean water. Our WTA estimates suggest the answer may be yes, with the caveat that a policy
offering such a contract would be different enough from our setting to require independent
evaluation.

In the literature, direct evidence on the WTP for clean water is scant (Ahuja, Kremer
and Zwane, 2010; Null et al., 2012), because prior work has either quantified households’
valuation of water treatment technologies rather than clean water itself (Ashraf, Berry and
Shapiro, 2010; Kremer et al., 2011a; Berry, Fischer and Guiteras, 2020) or inferred valuation
indirectly from time costs (Kremer et al., 2011b). We estimate a population average WTP

8Although our population is deprived of potable water, they do have plentiful access to water for other
purposes. This result likely reflects this fact.
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from our experimentally measured demand curve for clean water of INR 132 per month for
clean water access (USD 20 annually at INR 80 per USD), about 1.5 percent of median
household monthly expenditure. The most comparable estimate to our number comes from
seminal work by Kremer et al. (2011b) who use travel cost methods to indirectly infer an
annual WTP of USD 4.44 (adjusted to 2023 dollars) amongst rural Kenyan households for
year-long access to a protected (clean) spring. Our estimate is over 4.5 times as high. The
WTP we measure for home-delivered clean water is also substantially higher than chlorine-
based point-of-use treatment. Adjusted to 2023 dollars, we estimate the population average
WTP for chlorine solution from Ashraf, Berry and Shapiro (2010) at about USD 0.11 (14
times lower) for an amount of water equal to the monthly consumption in our sample.
Indeed, the WTP from other similar studies is even smaller (Kremer et al., 2011a). These
extraordinarily low valuations reflect the substantial gap between the monetary costs of
point-of-use chlorine and its take-up. A key implication of our experiment is that this does
not represent how much households value clean water itself, in part because prior work has
evaluated bundles that provide water coupled with other non-monetary costs such as travel
time, chlorine taste, or the inconvenience of home treatment.

We estimate a lower-bound for WTA that is even larger, at INR 420 per month (approx-
imately USD 60 annually), or 4.7% of median expenditures. Our WTA estimates are high
enough to exceed the full variable costs of providing water to households for free. These costs
are lower than existing cash transfer amounts in our setting, suggesting that governments
may wish to evaluate a policy swap replacing some cash transfer funds with the provision of
clean water, either universally or as an opt-in choice.

Does high demand and valuation imply that this approach can contribute to solving the
clean water access problem? The answer to this question depends on whether direct delivery
of decentralized treated water is amenable to implementation at scale and whether it is cost-
effective. On implementation, the intervention appears technically feasible to sustain, given
that our partner firm has worked for over a decade in a few hundred villages in Odisha,
and demonstrated by the by the proliferation of private provision of clean water in low-
and-middle-income countries (Cohen and Ray, 2018), with decentralized water kiosk and
“water on wheels” delivery models like those used by our implementation partner becoming
increasingly common (Advani et al., 2011; Brown et al., 2011; Daly et al., 2021).

On cost-effectiveness, our data suggest that providing clean water at high prices can be
privately profitable. However, our estimated demand curve and associated WTP predicts
that, at these prices, only a small fraction of households will buy water. These results
therefore explain why the private market has not fully solved the clean drinking water access
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problem. Thus, in order to achieve universal access to clean water using this approach, the
state likely needs to cover all or most of the variable costs of water supply.

Due to the presence of externalities, state spending on most preventive health interven-
tions is not based on WTP alone. Rather, the cost-effectiveness of such interventions is
typically tested by quantifying expected gains in Disability-Adjusted Life Years (DALYs),
and comparing the cost per DALY to standard benchmarks. We carry out a back-of-the-
envelope calculation using health benefits based on Kremer et al. (2023), and take-up and
cost estimates from our data. We estimate that the cost per DALY of free home delivery
of clean water in our intervention ranges between USD 71 and USD 226.9 This range easily
clears conventional cost-effectiveness benchmarks, similar to or slightly higher than well-
studied interventions such as coupons or free dispensers for chlorine (USD 106 and USD 33
per DALY, respectively), all while achieving high take-up. We discuss these issues in more
detail in Section 6.

This paper both contributes to the literature on improving access to clean water, and
joins a broader conversation in the environmental economics literature on measuring how
much people in low-income countries value environmental quality (Greenstone and Jack,
2015). We demonstrate that decentralized treatment and home delivery of free or subsidized
water could play an important role in improving clean water access. In doing so, we also
provide revealed-preference experimental estimates of the willingness-to-pay for an aspect
of environmental quality (in this case, water clean enough to drink). Past work has either
inferred this type of valuation by using a hedonic approach, valuing the environment via
variation in time costs (Kremer et al., 2011b), the cost of air purifiers (Ito and Zhang, 2020),
or the cost of protective masks (Baylis et al., 2024), or has instead used take-it-or-leave-it
or Becker, DeGroot and Marschak (1964) methods to estimate demand for environmental
quality production technologies such as chlorine solution (Ashraf, Berry and Shapiro, 2010) or
water filters (Berry, Fischer and Guiteras, 2020), rather than directly for the environmental
amenity itself. Because our estimate of WTP for clean water is substantially higher than
that found in prior work, this distinction appears meaningful. We also provide amongst the
first experimental revealed-preference estimates of WTA for clean water or environmental
quality more broadly, extending a literature that has been reliant on contingent valuation
(Horowitz and McConnell, 2002; Tunçel and Hammitt, 2014). Our results suggest that home

9The main driver of DALY-based estimates of the impact of clean water on health is child mortality.
Because we knew we would be under-powered to detect changes in this rare event, we did not measure it
ourselves, and instead use meta-analysis estimates from Kremer et al. (2023). Our range of estimates reflects
varying policy choices such as whether to target some households or pay for capital, and allowances for
imperfect implementation and limited reliability.
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delivered clean water is highly valued by households, and may be an important complement
to piped water and point-of-use chlorine.

2 Background

The setting for this paper is the Indian state of Odisha. Odisha is one of the poorer regions
in the country, with its HDI ranking 29th out of 36 Indian states and union territories in
2017–2018 (MOSPI, 2021). As with many parts of the developing world, Odisha faces a
severe drinking water access problem, especially in rural areas. Figure 1 plots the share of
rural households by primary water source (piped, groundwater, bottled water, and other)
across Indian states and union territories per the 78th round of the National Sample Survey
(National Sample Survey Office, 2023). With respect to piped water, Odisha ranks 32nd out
of 37, with 83% of households still lacking access as of 2021. Moreover, a 2023 survey in 9,856
villages revealed that 41% of the population lacked access to safe drinking water (Atmashakti
Trust, 2023). Drinking water became the subject of grassroots protests (Express News
Service, 2024b) and was a heated election campaign topic (Express News Service, 2024a) in
Odisha during India’s 2024 general election. Interestingly, privately supplied bottled water,
though rare in Odisha, now has a meaningful presence in some wealthier states (Rukmini S.,
2024).

Figure 1: Water access in Odisha
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Study population We conducted our study in 160 villages spanning 6 of Odisha’s dis-
tricts; we map the study location in Appendix Figure B.1. Our study population was rela-
tively poor, with the representative control group reporting an average monthly household
expenditure at endline of INR 12,494, or approximately INR 2,500 in monthly per-capita
expenditure – meaningfully lower than the contemporaneous all-rural-India average of 3,773
(MOSPI, 2024). The median monthly expenditure was INR 9,000.10 The median household
in our sample had 5 members, of whom 3 are children. Our sample also had limited (but
highly-skewed) savings, with the control reporting a median (mean) bank balance of only
INR 2,000 (INR 22,791). The median household reported being able to make a purchase of
no more than INR 500 (≈ 6 USD) tomorrow without borrowing. 11

Clean water access Although our population was poorer than the national average, our
households were not constrained for water. Odisha has an abundance of groundwater at
shallow depths and receives substantial rainfall. Averaged across all our surveys over the
course of the experiment (August 2022 – August 2023), 76% of the representative control
group reported using groundwater for drinking, and 34% reports using piped water. Less
than 1% reported using surface water or bottled water.12 Households do report expending
time for water collection, with the average household spending 32 minutes a day obtaining
drinking water.

Unfortunately, household access to potable drinking water could have nevertheless been
quite poor, as river, ground, and surface water contamination are common in Odisha (Odagiri
et al., 2016; Senapati, 2021; Biswas, 2022). Piped water is also not guaranteed to be safe
to drink, with prior research having found E. coli in piped water in rural areas of the state
(Reese, 2017).13 Rural piped water in our setting was delivered from storage tanks filled with
ground or surface water without central treatment plants, potentially increasing the chance of
contamination. As indicative evidence, we collected 17 water samples from different sources
(open well, tube well, tap, and the drinking water in our intervention) from our study villages
and had them tested by an Odisha state water testing laboratory (see Appendix Figure A.2).

10As described in Section 4 below, we conducted repeated monthly surveys with a randomly-selected subset
of experiment households, starting in the first month of the intervention and ending either 5 or 7 months
after implementation began in each village. The endline contained more detail on households so we use the
representative control in the endline survey to provide these details.

11A potential explanation for limited liquidity is that common income sources, such as agricultural income,
remittances, and government transfers are irregular. In such settings, expenditure can be a more reliable
measure of a household’s economic status than monthly income. With this caveat, in response to a question
on binned monthly income, the median control response was in the range INR 12,000 to INR 16,000.

12Households could use multiple sources, so the total exceeds 100%.
13This corroborates other findings from developing countries broadly (World Bank, 2017) and from urban

India (Jalan and Somanathan, 2008) that show high degrees of contamination in piped water.

8



Though this sample is too small to be representative, we detected problems with pH, E.Coli,
fecal coliform, and salmonella in at least one sample from every source except the treated
water of our intervention. We found E. Coli and fecal coliform in all tap water samples.14

There have been several operational challenges with the rural piped water network in Odisha
that lead to a risk of contamination. These include very little systematic testing of water
quality, no residual chlorine in most samples, and village level committees that face difficult
management and maintenance challenges (Jal Jeevan Mission, 2022).

Many households appeared to be aware that their water was not safe, and took steps to
treat at least some of it. Aggregated over monthly surveys during the experiment, 13% of
households in the representative control group reported using chlorine in at least one survey
round, 19% of households reported boiling water at least once, and 39% reported straining
at least once. Nevertheless, regular water treatment was somewhat more limited, with only
3.2% of households reporting using chlorine, 9.6% reporting boiling, and 19.5% reporting
straining in the average survey round.

Implementation partner In 2022, we began a collaboration with Spring Health India
Pvt. Ltd — a private company that sells clean water to rural households in Odisha. Spring
Health was founded in 2011, and in 2022 operated in 230 villages in 7 districts of the state.
We partnered with Spring Health to conduct a field experiment, discussed in more detail in
the next section.15

The clean water sold by Spring Health originally comes from local ground water or surface
water, and is treated in a plant powered using decentralized solar electricity. In most cases,
there is one treatment facility per village. Spring Health trains a local entrepreneur who
operates and maintains the treatment facility and is normally also the owner of the well
providing the input water. We discuss the various elements and costs of this business model
in more detail in Section 6 as part of a cost-benefit analysis of our intervention.

Spring Health treats its water using an electro-chlorination process using solar panels to
power the treatment plant. The use of solar panels allows the treatment plant to operate
without access to electricity from the grid. Sediments are removed using a precipitation
tank and water is disinfected using chlorine dioxide gas delivered in precisely measured
doses. This procedure is intended to remove coliform and other bacteria and protozoan

14Unlike prior work on water in South Asia, which is concerned with heavy metals (e.g. Buchmann et al.,
2022), this is not a major problem in Odisha. India’s Central Ground Water Board has detected arsenic
contamination in only one district in Odisha, lying outside our study regions (Ministry of Jal Shakti, 2022).
In our own water tests, no samples contained problematic levels of arsenic, cadmium, or lead.

15Spring Health partnered with us for two main reasons: first, because rigorous evidence of consumer
demand and water benefits might be helpful to attract capital for expansion; and second, they were interested
in carefully measuring demand to ensure they were setting prices optimally.
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parasites. A coagulant-flocculant is used to remove flouride, mercury, arsenic, and iron.16

Throughout this paper, unless explicitly specified, we use ‘treated water’ or ‘clean water’ to
indicate water that has been treated to remove coliform, or that has passed a coliform test.

In Spring Health’s status quo business model, any household in a village served by Spring
Health could pay for clean water deliveries to their home. Treated water is packaged and
sealed in reusable bottles and delivered by Spring Health delivery staff to the doorstep of
enrolled households.17 Deliveries are made multiple times each week. Households could place
orders as they like during the week, with payments made against orders fulfilled. Not all
households paid at the time of delivery, with regular consumers often paying at the end of
the month. Spring Health pays out a monthly stipend to both the operator of the treatment
plant and to its delivery staff.

A key benefit of this model is that it eliminates some of the non-monetary costs associated
with point-of-use treatment or source improvement. First, although treatment is decentral-
ized and hence far cheaper than piped water networks, it occurs outside the household. This
reduces the inconvenience costs of having to remember to treat and store water at home.
Second, it ensures that water is appropriately treated and does not leave an unpleasant resid-
ual taste.18 Third, the home delivery model eliminates time costs for households who may
otherwise have had to travel to collect water, while also removing the risk of contamination
in this process. An important remaining risk involves contamination at home, underscoring
the continued importance of hygiene behaviours and habits such as boiling.

3 Experimental design

3.1 Research objectives

The design of our experiment is motivated by two main goals. First, we aim to test the
viability of home delivery of clean water as a solution to the access problem. Specifically,
we seek to measure whether households order clean water, how much households order, how
these orders change over time, and how this varies with the price of water. Combining this
information with data on costs also reveals the extent to which it is privately profitable to

16As discussed above, arsenic contamination has not been detected in our study districts.
1786% of our households live in 10-litre-bottle villages, and the remainder in 20-litre-bottle villages. These

reusable bottles are akin to those used in water coolers, limiting plastic pollution when compared against
single-use plastic water bottles.

18The use of ClO2 gas for treatment avoids the well-known unpleasant taste from using chlorine tablets
or solutions, which use stable salts such as NaOCL, resulting in free chlorine and chloramine compounds
containing nitrogen (Crider et al., 2018). In the taste tests we conduct, all participants ranked water treated
with chlorine solution (per the package’s specifications) worse than both bottled water from the market
(Bisleri brand) and Spring Health water (see Appendix Figure A.1).
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deliver clean water. As secondary outcomes, we are also interested in the extent to which
home delivery of clean water affects drinking water sources, water collection time, water
treatment, and a variety of health outcomes. Our experiment is thus designed to facilitate
estimation of these features of water demand and subsequent benefits of clean water access.

Second, we aim to measure whether — and how much — households value clean water.
Empirical evidence on whether households value clean water itself, as distinct from water
treatment methods, is critically important. If households do not value clean water, whether
due to undervaluation of health, lack of information, or other behavioral factors (Dupas and
Miguel, 2017; Kremer, Rao and Schilbach, 2019), this would explain limited take-up of point-
of-use treatment and have important implications for any other approach, including piped
water infrastructure. Conversely, if households do value clean water, uncovering solutions
which deliver this product outside of previously-evaluated approaches may have high returns.

In our empirical setting, two measures of valuation are of interest: both the amount a
household would be willing to pay to obtain clean water (WTP) and the amount a household
would have to be paid to forgo clean water access (WTA). WTP is useful as the standard
Kaldor-Hicks measure of valuation, and to facilitate comparisons with the (limited) prior
literature. However, in a developing-country setting, WTP may be biased downwards due
to market failures (Greenstone and Jack, 2015), while WTA, in theory, does not suffer from
this problem. Moreover, WTA and WTP need not coincide: if there are no (or limited)
market substitutes for a good, which is the case for clean water, WTA can be much larger
than WTP (Hanemann, 1991). The WTA is itself also meaningful, as it reveals whether
households would prefer receiving free water to receiving cash. This is likely to be policy-
relevant in the large number of low- and middle-income countries worldwide which provide
low-income households with cash transfers (Banerjee et al., forthcoming).

The prior literature has either measured WTP using hedonic approaches (e.g., Kremer
et al., 2011b) or instead measured demand for water treatment technologies (Ashraf, Berry
and Shapiro, 2010; Kremer et al., 2011a; Dupas et al., 2016; Berry, Fischer and Guiteras,
2020); WTA is typically measured using contingent-valuation approaches (Horowitz and
McConnell, 2002; Tunçel and Hammitt, 2014). Our study is therefore designed to directly
measure WTP and WTA for clean water itself, using revealed preference via a randomized
controlled trial. Because our treatment is clean water that is directly delivered to the home,
in contrast to prior work, we estimate how much households value clean water absent the
disamenities of collection time or water treatment.
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3.2 Sampling

Our experiment took the form of a cluster-randomized field trial with several treatment
arms. We selected 160 villages where Spring Health had an existing presence as the site of
the experiment. All villages in the experiment had been served by Spring Health for at least
24 months prior to the beginning of the study.

Figure 2 depicts the experimental design. We randomly assigned 120 villages in the
sample to one of three treatment arms (with 40 villages per arm), holding 40 villages back
to serve as a buffer for necessary replacements / “pure control” group where no experiment
activities or survey data collection took place. In treatment villages, we randomized every
household in the village to either a (sub-)treatment arm, in the form of special offers from
Spring Health (nominally 39 households per village, see randomization below), or to control
(all other households). In 107 of the 120 main experiment villages, water is sold in 10 litre
bottles for INR 1.4 per litre. In the remaining 13 villages, Spring Health sold water in 20
litre bottles for INR 1.25 per litre. 4 of these villages were randomly assigned to the price
arm; 6 to the free ration arm; and 3 to the exchangeable entitlement arm.

Attrition Early in the experiment, our partner lost a valuable revenue stream from the
sale of carbon credits. They scaled down operations on a village-by-village basis in order to
continue to be able to reliably provide clean water. As a result, our experiment could only
be implemented in 99 villages (36 in the discount group, 27 in the exchangeable entitlement
group, and 36 in the free ration group), rather than the original 120. Appendix Figure C.1
shows that our treatment arms are pair-wise balanced after accounting for this attrition.
Moreover, we include village fixed effects in all regressions, ensuring that our identification
comes from within-village comparisons of households randomly assigned to treatment or
control conditions, which are not subject to any village-level attrition concerns.

3.3 Treatment arms

Priced water In each village in the ‘prices’ arm, we randomly assigned 13 households to
receive a 10% discount offer for the duration of the experiment, 13 to receive a 50% discount
offer, and 13 to receive a 90% discount offer. All remaining households received no discount,
but were able to continue to order Spring Health water at the full market price.
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Free water ration In each village in the ‘free ration’ arm, we randomly assigned 39
households to receive a free and unconditional ration of up to 400 litres of water per month.19

To receive any water, households needed to place orders with Spring Health, just like paying
customers. Households who exhausted their ration could order additional water at full price.
Households could opt not to use some or all of their quota, since water deliveries were only
made when requested. There was no penalty or benefit for households who chose not to avail
the full ration. The remaining households received no ration (equivalent to a free quota of 0
litres per month), but could continue to order Spring Health water at the full market price.

Exchangeable water entitlements In each ‘exchangeable entitlement’ village, we ran-
domly assigned 38 households to receive an offer of a 400 litre entitlement, just as in the
free ration condition. As above, in order to obtain this water, they needed to place an order
with Spring Health. However, in this arm, households could redeem unused water within
their entitlement amount for cash. For every unclaimed bottle of water, households were
randomly entitled to receive payments equal to 10% of the market price (9 households), 50%
of the market price (10 households), 90% of the market price (9 households), or 100% of the
market price (10 households).

The reimbursement rates were set exactly equal to the prices in the prices arm, creating
similar monetary incentives differentiated only by whether ordering an additional bottle
involved paying out vs forgoing cash. At no point did this condition involve any physical
exchange of water for cash. As in the other arms, households who did not receive a non-zero
exchangeable quota remained eligible to buy Spring Health water at full price.

Since the entitlement was monthly, each household’s refund was calculated at the end of
every month. Transfers were made either to mobile money accounts or bank accounts using
details provided by households. Though households were intended to be paid at a monthly
frequency, in practice payments were made less often in part because refund amounts for
a single month were often very small. Appendix Figure C.3 demonstrates that households
do not change water ordering behavior in response to payments, suggesting that payment
timing does not impact how households order water in this arm. In order to confirm that
households understood this treatment, we conducted a small set of phone-based spot checks,
which revealed high comprehension.20

19This was benchmarked to be well above the mean consumption for households observed in both pre-
experiment administrative data and in our pilot.

20We reached 28 households across 4 villages, with all offer levels represented. When asked how much
cash they would receive if they did not order 1 bottle, 24 of these households named the correct amount, 2
households were off by INR 1, 1 household did not know, and 1 household refused to answer.
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All treatment villages: Free one-time 100 litre sample In addition to the treatments
described above, we randomly assigned 5 households in each treatment village to receive a
one-time offer of 100 litres of free water. Households who chose not to take this offer received
nothing in return. These households could otherwise order water at the market price. This
condition provides a test of the extent to which experience with clean water impacts demand.

Buffer / pure control (40 villages) We assigned a final 40 villages to a buffer / pure
control group, from which we drew replacement villages in the event of main-sample attrition.
The remaining villages in this arm were completely ‘business-as-usual’. Throughout the
experiment, all households in these villages were able to order Spring Health water just as
they had been doing before, but no surveys were conducted in these villages. Our only
source of data on these villages comes from Spring Health’s administrative data, generated
through the normal course of business. We compare households in these villages to control
households in treated villages in Appendix E.

3.4 Randomization

We intended to include all households in each treatment village in our study, and therefore
conducted an in-situ randomization procedure, in which we distributed scratch cards drawn
from a shuffled deck to every home in the village. We prepared decks based on the most
recent census figures on village population, and each village’s deck included 39 treatment
cards. Since the number of households in most villages had changed since the census and
since not every household had an available adult to receive a card during distribution, decks
were not exhausted. Thus, in some villages the actual number of treatment cards distributed
was less than 39. The average number of realized treatment households per village was 36.25.
Appendix Figure B.2 shows the scratch card design. All scratch cards looked identical, but
had a unique ID number that the research team could use to map scratch cards to treatment
conditions. This mapping was unknown to the field staff; offers were only revealed when
a household scratched their card in front of the enumerator. The household address and a
mobile phone number was noted down when the card was distributed. This helped ensure
that cards could not be used by anyone other than the recipient households.

3.5 Treatment duration

The experiment began in May 2022 and concluded in August 2023. For logistical reasons,
villages were randomly assigned to 8 phases, and the offers were rolled out in a staggered
manner, with village randomization stratified by phase. All treatment households were

14



Figure 2: Experimental design diagram
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Notes: This figure shows the experiment design (pre-attrition). We randomly assigned 40 villages each to
a price arm, an exchangeable entitlement arm, a free ration arm, and a buffer / pure control group (no
intervention or surveys). In treatment villages, we randomly assigned 39 households to sub-treatments, 5 to
a one-time free sample condition, and the remainder to control. In the price arm, treatment households could
order clean water with discounts of 10, 50, or 90 percent. In the exchangeable entitlement arm, treatment
households could order up to 400 litres of water per month for free, and received 10, 50, 90, or 100% rebates
for any water they chose not to order. Treatment households in the free ration arm could order up to 400
litres of water per month for free, but received no rebates.
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initially told that their offers would last for 5 months, based on available funding at the
beginning of the experiment. However, we obtained additional funding during the course of
the experiment, and were thus able to extend the offer for 2 months in all except the first two
waves, which contained 35 villages.21 Appendix Figure B.3 shows the implementation time-
line, including the scratch card distribution, water distribution, and survey data collection
(described in more detail in Section 4 below).

3.6 Experiment integrity

Balance Appendix Figure C.1 provides pair-wise balance tests between each treatment
arm and the control group on a series of household characteristics. Due to logistical con-
straints, we were unable to conduct surveys prior to the start of water distribution. We
therefore test for balance using data from the endline survey on variables that were impos-
sible or very unlikely to change as a result of our experiment: household size, presence of
children in the household, the education of the household head, years the household head
has lived in the village, and ownership of expensive appliances. Because this balance test is
conducted on data collected at endline, it accounts for attrition by construction. We fail to
reject balance on all variables and across all pair-wise comparisons, and the magnitudes of
any differences are small.

Compliance Appendix Figure C.2 shows that while most of our 99 experiment villages
received water deliveries for 100% of experiment months, in 12.3 percent of village-months,
our implementation partner did not offer delivery, largely due to staffing issues. In such
months, water orders are necessarily zero for all households. In Section 5, we present the
effects of our treatments in the 87.7 percent of village-months where delivery occurred. Our
primary empirical object of interest is households’ valuation of clean water, which cannot
be evaluated in months where no water was offered. When conducting our cost-effectiveness
analysis in Section 6, we adjust our compliance measure downwards (costs upwards) to allow
for imperfect reliability.

Pre-analysis plan This study was pre-registered through the AEA RCT Registry as
AEARCTR-0010545.22 We report the minor deviations from the PAP in detail in Ap-
pendix H.

21Households were informed about their extensions in December 2022–January 2023. We see no change in
consumption at the 5-month mark (see Figure 4).

22The registry entry is available from https://www.socialscienceregistry.org/trials/10545.
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4 Data collection and outcome variables

4.1 Record of scratch-card distribution

During our visits to all households in each treatment village to distribute scratch cards, we
generated a “listing” dataset, which includes the village name, the name of the household
head, whether the household was a Spring Health customer prior to the experiment, contact
and address details, the offer type, and the scratch card ID, which allows us to confirm the
link between a household and its treatment offer. We use these data to define the universe
of households in each of our treatment villages.

4.2 Administrative data

Our main outcomes of interest concern clean water demand. We obtained administrative
data on water orders from Spring Health. For every household that orders clean water
— including both households who received a treatment offer and those who did not — we
observe daily information on the number of bottles of water they ordered from Spring Health,
and at what price. For exchangeable entitlement households, we use these data to calculate
how much money they are owed at the end of each month.

Because Spring Health’s administrative data are complete (i.e., they contain entries for
every single bottle of water ordered in each village), and our listing dataset enumerates every
household in each village, we can also infer that households who do not appear in the Spring
Health administrative dataset must consume 0 litres. This yields a household-by-date panel
of Spring Health water orders.

4.3 Survey data

We administered a series of surveys with a randomly-selected subsample of 13 households in
each treatment village, stratified across sub-treatments to maximize statistical power.23 We
visited each survey household for four short “high-frequency” checks and a longer endline.
The first high-frequency survey normally occurred in the first or second months of the treat-
ment start date, while the endline normally occurred in the last month.24 Where possible we

23In price discount villages, we selected four control households and three households in each discount
level for surveys; in pure quota villages we surveyed six control households and seven quota households; and
in exchangeable quota villages, we surveyed three control households, two 10% exchange households, three
50% exchange households, two 90% exchange households, and three 100% exchange households. We did not
survey in pure control villages.

24An exception are the 35 villages in the first two phases where the offer duration was shorter. Here the
last survey occurred three months after the offers ended. Appendix Figure B.3 shows survey timings by
calendar month for all phases.
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repeatedly surveyed the same households in each survey, except in cases where a household
dropped out. In such cases they were replaced by selecting a backup household at random
from the corresponding (sub-) treatment arm.

In each survey, we asked households about health outcomes, missed work, health ex-
penses, drinking water choices, and water treatment choices in the week before the survey.
In the first survey we additionally collected basic household demographic information, in-
cluding total number of household members, number of adults/children, monthly income
and occupation. In the endline survey, we also collect more data on households including
information on household savings, expenditures, liquidity, and asset ownership. We did
not conduct surveys during months with no water delivery, so we are unable to evaluate
differences between treatment and control during these periods.

4.4 Water testing

As discussed in the background section, we conduct two types of water tests on small samples.
First, we collected 19 water samples from households in our study villages (8 from open wells,
6 from tube wells, 4 from taps, and 1 Spring Health) and had water quality (including pH,
heavy metals, and biological contaminants) analyzed by a government laboratory. Appendix
Figure A.2 shows the results. We find substantial biological contamination among all but
the Spring Health sample, and no evidence of heavy metal issues.

Second, we conducted 9 water taste tests with members of our survey enumeration team.
In these tests, subjects were given a comparison cup of water (unbeknownst to the subjects,
this was Bisleri, a leading bottled water brand), and then asked to compare four additional
samples (provided blind, and in a randomized order) to this original sample. These samples
were: tap water plus added chlorine (per the instructions on the chlorine treatment packet),
Bisleri plus added chlorine, the treated water in our treatment, and treatment water plus
added chlorine. Appendix Figure A.1 shows the results. Our taste testers uniformly rate
chlorinated sources the lowest, and rank Spring Health the highest on average.

5 Analysis and results

In this section, we describe the specifications we use to analyze data from the experiment
and summarise the main results. We begin by describing patterns of demand for clean water
under our different treatment arms. Next, we turn to our results on the valuation of water.
Finally, we provide survey evidence on the effects of water offers on time use, water treatment
behaviors, and health.
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5.1 Demand for clean water

We use administrative data on water orders to estimate demand under all of our treatment
arms. Households see non-zero marginal costs under both the prices and exchangeable
entitlements arms. In the first case, ordering water requires households to pay a per-unit
price, and in the second, ordering water requires households to forgo an equivalent per unit
cash transfer. In the free ration arm, the marginal cost is zero.

The top panel of Figure 3 shows the demand curve, plotting average water orders at each
price level for the priced water arm in blue, and at each refund level for the exchangeable
entitlement arm in purple. The green point at a zero price reports the average water orders
for households in the free ration arm.25 The bottom panel of Figure 3 separates net demand
into changes on the extensive margin on the left (probability of a household ordering any
water in a month) and the intensive margin on the right (conditional on ordering, how much
do households order).

We also describe changes in demand relative to the status-quo levels in the control by
estimating a set of simple regression models, described in Equation (1), and report the results
in Table 1.26

Yit = η1 · 10% discounti + η2 · 50% discounti + η3 · 90% discounti

+ η4 · 10 % exchangei + η5 · 50 % exchangei + η6 · 90 % exchangei
+ η7 · 100 % exchangei + η8 · Free rationi + η9 · One freei + γv + θt + εit (1)

where the outcome Yit is either an indicator equal to 1 if the household i ordered any water
during the course of the month-of-sample t, or the total monthly water orders for household
i in month-of-sample t in litres, Qit. The treatment indicators are each listed, γv and θt are
village and month-of-sample fixed effects, and εit is an error term. Identification comes from
a comparison of treated consumers to untreated customers within villages.

Finally, we estimate a dynamic specification to study the effects of our treatments on
water orders over time, with results reported in Figure 4. We pool sub-treatment arms for

25For graphical clarity in Figure 3, we do not use data from the 20-litre bottle villages where prices are
slightly lower. These villages are included in Table 1.

26In estimating Equation (1), we restrict the estimation sample to exclude months where water delivery
was disrupted and households could not place orders. See Appendix C for more details on these interruptions.
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Figure 3: Demand for clean water
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Notes: This figure presents the demand curve for clean water. We plot monthly water orders against the price of water for
households in the price arm and control (i.e., full price) in blue and against the refund amount for the exchangeable entitlement
arm in purple. The green point at 0 price shows mean orders in the free ration arm. The top panel plots average water orders
at different prices (or refund rates). The bottom-left panel plots the probability of ordering any water. The bottom-right panel
plots quantity ordered conditional on ordering water. We show 95% confidence intervals, derived from standard errors clustered
at the village level, in light gray. We jigger the INR 0.14 price point slightly to the left for visual clarity. In the experiment,
both the price arm and the exchangeable entitlement arm included an identical INR 0.14 incentive level.

clarity and report coefficients for a fully disaggregated variant in Appendix Figure D.1.

Yit =
7∑

r=1

βr
1 · Any discounti × 1[offer month = r]it

+ βr
2 · Any exchangei × 1[offer month = r]it + βr

3 · Free rationi × 1[offer month = r]it

+ βr
4 · One freei × 1[offer month = r]it + γv + δt + εit (2)
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Table 1: Intent-to-treat effects of clean water offers on water orders

Any orders Orders in litres

(1) (2) (3) (4)

Prices (Discounts) 0.38 95.93
(0.02) (7.68)

Exchangeable Entitlement 0.90 290.79
(0.02) (11.12)

Free Ration 0.89 0.89 269.93 269.93
(0.02) (0.02) (6.96) (6.96)

Onetime 100L 0.14 0.14 13.13 13.14
(0.01) (0.01) (1.98) (1.98)

10% Discount 0.09 19.99
(0.03) (9.31)

50% Discount 0.15 34.08
(0.04) (10.84)

90% Discount 0.88 232.12
(0.02) (7.22)

10% Rebate 0.89 285.86
(0.03) (14.12)

50% Rebate 0.87 282.69
(0.04) (14.56)

90% Rebate 0.93 297.99
(0.02) (10.18)

100% Rebate 0.93 297.16
(0.02) (11.22)

N 239,173 239,173 239,173 239,173
Control means 0.012 0.012 2.818 2.818

Notes: This table preseents intent-to-treat effects of water offers on water orders
at the monthly level, estimated using Equation (1) or a pooled version thereof.
We restrict the sample to village-months where Spring Health delivered water.
In Columns (1) and (2), the outcome is a binary indicator for the household hav-
ing ever bought water during the month. In Columns (3) and (4), the outcome
is total water orders in liters per month. All regressions include village fixed ef-
fects. Standard errors are clustered by village.

where 1[offer month = r]it is an indicator for being r ∈ {1, 7} months into the treatment
offer (such that 1 is the first month of the offer), and all other terms and sample restrictions
are as above.

Access to clean water While water purchases are low in the control (i.e., full-price) group,
our intervention leads to very high clean water take-up. The bottom left panel of Figure 3
shows that the monthly probability of ordering any clean water rises as price falls, reaching
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Figure 4: Water orders over time
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Notes: This figure plots the effect of our treatments on water orders as a function of time since treatment started (with the
first month offers were active set to 1), estimated using Equation (2). We pool over all price and exchangeable entitlement
sub-treatments. Standard errors are clustered at the village level. 35 villages — the first enrolled in the experiment — had
only 5 months of treatment, while the remainder had 7. The sample is restricted to months when deliveries occurred. Price
and exchangeable entitlement points are jiggered to the left for visual clarity.

approximately 90% at a price of 0.14 INR per litre (90% discounts). The monthly order
probability at low but positive prices is therefore substantively and statistically identical
to the share of households availing of the free ration. As shown in Column (2) of Table 1,
moving households from the original market price to a 90% discount increases the probability
of a monthly orders by 88 pp (s.e. 0.02). Importantly, we see no evidence of sharp changes
in demand around a price point of zero (a so-called “zero price effect”). These patterns are
in stark contrast to prior work on chlorine-based water treatments, where take-up even at
zero price is relatively low (Kremer et al., 2023), and where demand falls off precipitously
as prices increase from zero (Dupas and Miguel, 2017).

Notwithstanding the variation in order probability with price, an interesting feature of de-
mand is that conditional on consumption, quantity demanded is inelastic. The bottom-right
panel of Figure 3 shows demand along the intensive margin. In the prices arm, conditional on
ordering a non-zero amount of water, there is no statistically significant variation in orders
with price. On the intensive margin, all treatment arms order substantial amount of clean
water. Even at the highest price in the sample (1.4 INR per litre, 10× the lowest price),
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mean orders for households who consume more than zero is about 237 litres per month. In
our data, the average household size in our experiment is 5. Consuming 1.5 (2) litres per
person per day — a standard biological benchmark — would lead the average household to
use 225 (300) litres of water per month.27 The top panel of Figure 3 shows a full demand
curve, combining the extensive and intensive margins, which shows quantity decreasing as
price increases. As the two figures in the bottom panel show, this is driven entirely by the
extensive margin.

This pattern of demand can be rationalized by a simple stylized model where we assume
that the main benefit to treated water — for households who already have access to non-
potable water — comes from improved health. Let a household’s probability of falling sick in
a month be proportional to the share θ of their biological (i.e., fixed) drinking water needs
W that are met by clean water. For instance, let P (Healthy) = kθ so that the probability
of being healthy conditional on setting θ = 1 (i.e., drinking only clean water) is k ∈ [0, 1].
Typically, we would expect k < 1 because, even treated water may get recontaminated at
home, perhaps due to poor sanitation practices. Assume further that the cost of falling sick
is psick (e.g., lost work, increased health expenses, etc) and the cost of purchasing water
is pwater. In Tables D.3 and 3 we provide survey evidence on health outcomes that are
consistent with these mechanisms.

Households can thus be modeled as maximizing consumption utility ui(c) subject to a
budget constraint pc · c + pwater · θW ≤ I − psick · kiθ, where the right hand side is monthly
income I less sickness costs. If the product psickki ≥ pwaterW , households will set θ = 1 and
otherwise 0.

Lowering the price of water changes the extensive margin and attracts households with
lower expected health benefits from buying i.e lower values of psick × ki. This may be
households with worse sanitation practices, lower wages (hence lower absenteeism costs), or
clean alternatives.28 There is some weak evidence of this type of selection in Table 3 where
we document point estimates of clean water on sickness that are greater for the prices arm
than free rations. Admittedly this model is sparse and selection could also be induced by
allowing for factors such as switching costs, which may vary for other reasons.

Under all treatment arms and all prices, mean consumption of clean water (conditional
on ordering) is approximately enough to cover households’ biological drinking water needs,
but not to displace all other water uses. This is consistent with households setting θ near 1.

27The European Food Safety Association recommends 2 litres of water a day for men, 1.6 litres for women,
and about 1 litre for 2-3 year-olds (EFSA Panel on Dietetic Products, Nutrition, and Allergies, 2010).

28The fact that better sanitation increases water purchases in this model suggests that households who
have access to disinfectants like chlorine but do not like the taste might have a greater propensity to pay for
home delivered water.
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Survey evidence in Appendix Table D.2 shows that our treatment offers increase the number
of water sources households report using, increase the share of households drinking any clean
water, and increase the share of households who report drinking only clean water. Taken
together, these pieces of evidence are consistent with households buying water in sufficient
quantities to make it their primary drinking water source, but not to use purchased water
for other end-uses.

In the model we have outlined, there is no benefit to ordering more clean water than is
required to meet drinking water requirements W . In the experiment, households who are
provided a 400 litre quota of free water do not use the ration in full. Table 1 shows that take-
up under the free ration is 90%, and this treatment raises average consumption by 270 litres
per month per household.29 These results likely reflect the fact that although our households
have limited access to clean drinking water, they do not suffer from water shortages in
general. Indeed in our survey data, in both treatment and control arms, households report
ever running out of water (for any end-use) in the prior week only 2% of the time.

Modeling water as providing mainly health benefits would be unreasonable if households
could easily sell water to people outside the experiment. To check this, we asked households
about re-selling in the endline survey, and not a single respondent reported doing so. This
is perhaps unsurprising in the context of clean water, where it is difficult to signal quality if
it is not delivered by a trusted source in a sealed container, and where water is heavy and
difficult to transport.30

Finally, it is notable that demand is sustained over time. Figure 4 plots dynamic effects
of water orders for each treatment arm, estimated using Equation (2). Water orders in our
main treatments are stable during the full experimental period. These results demonstrate
that households are consistently willing to spend (or give up) money for water. This again
contrasts with prior experiences using other approaches to water treatment (Ashraf, Berry
and Shapiro, 2010; Dupas et al., 2016; Berry, Fischer and Guiteras, 2020), where many
households initially took up either chlorine or water filtration but were not found to be using
it in a follow-up measurement. Households in our main treatment arms consume similar
amounts of water every month, suggesting there are no learning or “experience good” factors
at play (either about the intervention itself or about clean water) or “experience good”
effects.31 Despite being informed that the intervention would end after several months,

29This treatment effect translates to a population average of about 280 litres per month, or approximately
300 litres per month conditional on a non-zero order.

30In theory, a re-seller could hand over a Spring Health bottle to someone else without breaking the seal.
In practice, this would render sales unprofitable, since our partner levied a substantial charge of 400 INR if
water containers were not returned by the purchasing consumer.

31A direct test of experience good effects comes from households given a one-time free allocation of 100
litres. These consumers use this water in the first month, but revert to behaving like the control afterwards.
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households also do not significantly change behavior in the final month of the experiment,
suggesting that the impermanent nature of the intervention is unlikely to bias our findings
relative to a permanent policy.

5.2 The value of clean drinking water

Our experiment recovers two measures of valuation: (i) a willingness-to-pay (WTP) estimate
from the demand curve in the prices arm, and (ii) a bound on a willingness-to-accept (WTA)
estimate from the exchangeable entitlement arm.

Willingness-to-pay A measure of the population average WTP is the area under the
demand curve in the top panel of Figure 3, which is also then the consumer surplus at zero
price. To estimate surplus from drinking water, we calculate the area under the prices (blue)
demand curve from Figure 3 using the trapezoidal method.32 This yields an average WTP of
about INR 132 for monthly clean water access — approximately 280 litres per month, where
consumption at the zero price point is given by the average water orders in the free ration
treatment arm. At approximately 1.5% of median consumption, this number is relatively
high for a very poor population (comparable to monthly spending on milk, INR 186).

Willingness-to-accept In the exchangeable entitlement arm, households have an enti-
tlement of 400 litres of water. They may place orders for water for free, but since unused
water earns a rebate, this arm provides household the option of relinquishing the entitlement
to water in exchange for a varying monetary incentive. Table 1, Column (4), shows that
assignment to all rebate levels in this arm raises consumption by 280 to 300 litres per month.
At the highest rebate rate (1.4 INR cash for every litre not ordered) households continue to
order a substantial amount of water (roughly 300 litres on average), and in doing so forgo
on average INR 420 (∼ USD 5.25) per month to ‘cover their drinking water needs’.33 This
amount is a lower bound on WTA.34 If cash rebates had been large enough to induce house-
holds to decline water for cash, we would identify WTA precisely, but we do not observe this
in our experiment. As we discuss above, demand – and therefore valuation – is sustained
over time.

32This exercise is more flexible than making common functional form assumptions such as a logit demand
system, which do not necessarily match the empirical evidence as well.

33This shorthand is convenient since household orders suggest they do not value the 400th unit of water
much but do value the 100th unit, the former being well above the probable drinking water needs of most
households and the latter well below.

34One concern is that households may value temporary clean water access differently from permanent
clean water access. If anything, this should make households in the WTA arm more likely to take the cash,
further suggesting that our WTA estimates represent a lower bound.
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This is a substantial sum of money, even as a lower bound. INR 420 is about 4.7% of
median monthly expenditure in the control group (INR 9000), 77% of average expenditure on
tobacco and alcohol (INR 598), 2.3 times monthly expenditure on milk, and 84% of spending
on mobile bills (INR 498). It is also sufficient to cover the variable costs of providing water
for free (see Section 6 for a discussion of the costs of supply). In Section 6, we argue that
these measures of WTA have direct policy implications.

Comparing WTP and WTA Divergences between measures of WTP and WTA are
common (Horowitz and McConnell, 2002; Tunçel and Hammitt, 2014), but our experimental
design and results help rule out certain explanations. First, households in both the price
and exchangeable entitlement arm face incentivized choices, ruling out issues with stated
preference approaches. Second, our measures of WTP and WTA are derived in a long-
running field experiment, which avoids many lab framing issues (e.g., those discussed in
Plott and Zeiler, 2005). Third, differences in opportunity costs cannot explain the wedge
because the marginal incentives in the price and entitlement arms are identical. Fourth,
selection concerns are mitigated by randomized assignment, as the balance tests in Appendix
Figure C.1 help confirm. Fifth, in both of these arms, households must call the company and
ask for a delivery to get water. Households therefore do not have a physical stock of water
that they are being asked to return for cash, so differences are unlikely to be due to loss
aversion (e.g., Ericson and Fuster, 2014). Sixth, this gap is not driven by household mistrust
in the exchangeable entitlement rebates. If households in this arm did not expect to be
paid, we would expect that the pattern of household orders shortly after the first payment
was deposited would differ from those observed shortly before. Appendix Figure C.3 shows
that this is not the case. Seventh, the gap between WTP and WTA is unlikely to be
driven by information frictions, as Figure 4 shows that demand is stable over time, and that
experience with clean water (in the one-time offer group) does not lead to sustained orders
absent discounts. Finally, households in our sample have limited ability to borrow; prior
research demonstrates that liquidity constraints can lower WTP (e.g., Berkouwer and Dean,
2022). However, because these constraints increase the (shadow) value of cash, they should
impact both WTP and WTA, rather than driving a wedge between the two measures of
valuation.

What, then, explains the difference between WTP and WTA in our setting? Theory
suggests one possible explanation: under certain conditions, WTA can far exceed WTP. In
particular, this can arise for goods with limited market substitutes (Hanemann, 1991, 2003)
or when consumers have asymptotically bounded utility functions (Amiran and Hagen, 2003).
The intuition is as follows: if there is no bundle of private goods that can compensate for
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the loss of a particular rationed good in utility terms, then WTA for the rationed good can
be infinite. Thus, when there are only imperfect substitutes for the rationed good available
on the market, WTA can be much larger than WTP. Support for this hypothesis has been
found in lab experiments (Shogren et al., 1994; Shogren and Hayes, 1997). This describes
our setting well: given that clean (and perhaps also tasteless) water is the commodity of
interest, households have only the imperfect substitute of point-of-use treatment, which – by
revealed preference – is relatively unpopular. Other commercial bottled water is available,
but extremely expensive.35 Though this need not be the only explanation for the divergence
between WTP and WTA (i.e., there may be behavioral factors that also drive a wedge
between the two measures), it appears plausible in this context.

Households value clean water highly Both our WTP and WTA estimates reveal that
households would be willing to exchange substantial sums of money for clean water access,
with an annual WTP of approximately $20, and an annual WTA of approximately $60. To
contextualize our measures, this WTP (WTA) for clean water access is approximately 4.5
times (14 times) larger than the WTP for clean spring water indirectly inferred from time
use in Kremer et al. (2011b).36 It is also much higher than for chlorine-based point of use
treatment. Adjusted to 2023 dollars, the population average WTP for clorin (a relatively
popular brand of home-use chlorine solution), from the demand curve reported in Ashraf,
Berry and Shapiro (2010), is about USD 0.11 or 14 times lower that our WTP for an amount
of water equal to the monthly consumption in our sample. An important advantage of our
estimates is that they directly reveal households’ valuation of clean water itself, excluding
any disamenity value from water purification or traveling to retrieve water.

As a comparison with other environmental quality valuations in the developing world,
the WTP of households for clean water in our experiment is about 15 times higher (45 times
for WTA) than the WTP of low-income Delhi residents to reduce PM2.5 by 10 micrograms
per cubic meter from Baylis et al. (2024). It is slightly less than double the estimate in
Ito and Zhang (2020) for how much richer Chinese households would be willing to pay to
eliminate pollution generated by the Huai River heating policy. We therefore conclude that
household valuation of clean water is relatively high.

35For instance, store bought bottled water from the popular Bisleri brand costs INR 90 per 20 litres, or
INR 4.5 per litre; more than three times the unsubsidized price of Spring Health water.

36An important finding from Kremer et al. (2011b) is that spring water, transported to the household by
individuals, is prone to recontamination, lowering its benefit. In contrast, Spring Health water is delivered
in sealed containers, reducing this risk.
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5.3 Impacts on water collection and water purification

In this section, we use survey data to evaluate the extent to which clean water leads to
household behavior changes. We focus on two categories of outcomes. First, we measure time
spent collecting water. The water we deliver in our intervention might lead to substantial
time savings, if it were to displace trips to wells to collect groundwater.37

Second, we measure behaviors households undertake in order to make their water safe
to drink. Theoretically one benefit of purchasing clean drinking water is that home treat-
ment could be reduced, saving time and money, especially for boiling where fuel costs may
be significant. On the other hand, given that in-home contamination remains a plausible
concern, and that mixed drinking sources may be used, home treatment is probably a very
useful habit to retain.

We use data from our repeated surveys to estimate panel regressions of outcomes on our
treatments. In the interests of parsimony and precision, in our main specification, we pool
across sub-treatment arms.38 Our main specification is thus:

Yit = η1 · Any discounti + η2 · Any exchangei
+ η3 · Free rationi + γv + δt + εit (3)

where Yit is an outcome for household i surveyed in month-of-sample t, Any discounti,
Any exchangei, and Free rationi are treatment indicators, γv and δt are village and month-
of-sample fixed effects, respectively, and εit is an error term, clustered by village.

Water collection We first consider changes in time spent collecting water. Our treatment
offers are for delivered drinking water, so we expect water collection time to fall. The first
column of Table 2 reports the results. Control households spend an average of 32 minutes per
day collecting water. All three offer types lead to meaningful reductions in water collection
time, with time savings of 4.8 minutes (15%, p < 0.01) in the price arm, 9.0 minutes (28%,
p < 0.01) in the exchangeable entitlement arm, and 12.6 minutes (39%, p < 0.01) in the free
ration arm.39 Note that water collection time does not fall to zero, consistent with households
continuing to use external water sources to meet their (non-drinking) water needs.

37Though home delivery of clean water would not deliver time savings over piped water, only 24% of the
control group reports getting their drinking water only from taps.

38We present intent-to-treat effects on health broken out by sub-treatment in Appendix Table D.1.
39Though we did not collect data on the identity of the household member who collects the water, it is

extremely common in developing countries for this task to be borne overwhelmingly by women, so reductions
in time spent collecting water may have gendered benefits (UNICEF, 2017).
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Water purification Next, we measure the effect of our offers on actions households un-
dertake to make their water safe to drink. Columns 2-4 of Table 2 report effects on the prob-
ability that households report boiling, chlorinating, or straining water in the past week.40

We find no evidence that households change their self-reported treatment behavior, and can
reject relatively modest effects in all treatment arms, suggesting that clean water offers do
not crowd out (limited) ongoing water treatment efforts.41 Columns 5 and 6 report changes
in the collection time and costs of the main fuel used to boil water, conditional on reporting
any boiling in that week. The point estimates suggest small-to-moderate reductions in both
across all treatment arms, but they are imprecisely estimated.

Table 2: Intent-to-treat effects of water offers on water collection and purification

Collection time Chlorinates Strains Boils Fuel time Fuel cost
(1) (2) (3) (4) (5) (6)

Prices (Discounts) -4.77 0.00 0.02 0.00 -1.99 -5.54
(1.81) (0.01) (0.03) (0.02) (10.95) (10.55)

Exchangeable entitlement -8.95 -0.01 -0.06 -0.01 -4.31 -6.07
(2.12) (0.01) (0.04) (0.04) (5.81) (18.88)

Free ration -12.55 -0.01 -0.04 -0.01 -18.32 -9.95
(2.54) (0.01) (0.02) (0.02) (14.36) (12.63)

N 1,523 1,535 1,535 1,535 335 335
Control Means 32.339 0.032 0.195 0.096 60.267 31.614

Notes: This table presents intent-to-treat effects of water offers on water collection and purification, estimated using
Equation (3). Column (1) is water collection time in minutes per day. Columns (2), (3), and (4) are binary indicators
for treating water with chlorine, straining, or boiling, respectively. Column (5) is the amount of time spent collecting
fuel for boiling in minutes per day, and Column (6) is amount of money spent on fuel for boiling in rupees, both for
only the households who report boiling water. We restrict the sample to village-months where Spring Health delivered
water. All regressions include village and month-of-sample fixed effects. Standard errors are clustered by village.

5.4 Effects of clean water access on health

We use our survey to measure the impacts of access to Spring Health water on a series
of self-reported health outcomes. This is informative not because there is any doubt that
drinking contaminated water is harmful, but because perceived benefits help motivate our

40Note that the probability of reporting treatment in a given week is lower than the share of households
that ever report using a given treatment technology. In the case of chlorine, for instance, while 13% of
control households ever report treating their water with chlorine, the share reporting chlorine usage in the
average survey round is only 3.2%.

41In the exchangeable entitlement and free ration arms, point estimates suggest there may be declines in
straining, though these are not statistically different from zero. While straining may reduce cholera and
worms-based illnesses, it is ineffective for viruses, bacteria, and small protozoa such as giardia (World Health
Organization, 2008).
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results on household valuation of, and demand for, clean water. We use two-stage least
squares to estimate the local average treatment effect of drinking clean water (not necessarily
exclusively) on illness, health expenditures, and missed work due to sickness.

We estimate separate local average treatment effects for each experimental arm:

1[Drinks clean water]it = η · Any discounti + γv + δt + εit

1[Drinks clean water]it = η · Any exchangei + γv + δt + εit

1[Drinks clean water]it = η1 · Free rationi + γv + δt + εit

Yit = θ1 · ̂1[Drinks clean water]it + γv + δt + εit (4)

where 1[Drinks clean water]it is an indicator for whether the household reports drinking
any clean water, all other terms are defined as in Equation (3), and all sample restrictions
are identical.42 Table 3 reports the results.

We estimate that drinking clean water substantially reduces illness: the point estimates
in the table correspond to reductions equivalent to 62% of control (0.3 fewer sick individuals
per week on average, FDR-adjusted p = 0.04), 36% (0.18 fewer sick people, FDR-adjusted
p = 0.08), and 23% (not different from zero) in the discount, exchangeable entitlement, and
free ration arms, respectively. Health expenditure estimates are too noisy to be informative.
We also find large negative IV effects of drinking clean water on missing work in the price
and exchange arms: 12 pp (59% of control, FDR-adjusted p = 0.04), 13 pp (66%, FDR-
adjusted p = 0.07), and 8 pp (40%, FDR-adjusted p = 0.25) in the discount, exchangeable
entitlement, and free ration arms, respectively. Again, we document clear evidence that
clean water improves household health. Appendix D.3 also presents intent-to-treat effects
of water offers on health, and includes a breakdown of illness into various symptoms. These
also indicate health improvements though as expected, the local average treatment effects
are larger than the intent-to-treat estimates reported in Table D.3.

The health benefits of clean water on sickness are largest and most precise in the price
arm, while our estimated local average treatment effects are smaller and less precisely esti-
mated in the exchangeable entitlement arm and the free ration arm. This is likely driven by
(unobservable) selection.43 While nearly all households order clean water in the exchangeable
entitlement and free ration arms, fewer households order water in the price arm. The LATE
compliers in the price arm, who must spend to order water, are likely to be the households

42We use an indicator for any clean water consumption as the endogenous variable rather than quantity
because our primary object of interest is the effect of clean water access on health, rather than a dose-response
function. Moreover, conditional on orders, water quantity is fairly homogeneous across households.

43Lee, Miguel and Wolfram (2020a) document a similar phenomenon in the context of rural electrification:
households who purchase electricity connections at higher prices have larger benefits.
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Table 3: Local average treatment effect of clean water on health

Sickness Health expenses Miss work
(1) (2) (3)

Panel A: Prices (Discounts)

Drinks Treated Water -0.32 86.05 -0.12
(0.13) (176.97) (0.04)
[0.04] [0.64] [0.04]

N 3,254 3,254 3,254

Panel B: Exchangeable entitlement

Drinks Treated Water -0.18 -0.35 -0.13
(0.09) (78.88) (0.05)
[0.08] [1.00] [0.07]

N 3,063 3,063 3,063

Panel C: Free ration

Drinks Treated Water -0.12 -68.55 -0.08
(0.09) (154.34) (0.04)
[0.34] [0.67] [0.25]

N 2,752 2,752 2,752

Control Means 0.516 239.507 0.2

Note: This table reports instrumental variable estimates of the effect of a
household reporting drinking clean water on health outcomes, estimated using
Equation (4). In column (1), the outcome is the number of household mem-
bers being sick in the past week. In column (2), the outcome is household
spending on health in the past week in INR. In column (3), the outcome is an
indicator for the number of household members missing work due to illness in
the past week. We restrict the sample to village-months where Spring Health
delivered water, and drop the top 1 percent of health expenses to remove large
outliers. Each panel is a separate regression. All regressions include village
and month-of-sample fixed effects. Standard errors are clustered by village.
FDR-adjusted p-values in brackets.

who are at highest risk of falling ill.44 Broadly, these results corroborate existing evidence
that clean water improves health, helping to rationalize households’ relatively high valuation
of clean water access.

44It is also possible that households who face monetary costs for clean water are more likely to take care
to keep it clean, or to engage in complementary sanitation behaviors, though we do not have direct evidence
of this.
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5.5 Treatment effect heterogeneity

In this section, we explore heterogeneity in our treatment effects in valuation and health.

Heterogeneous valuation Due to extremely high take-up in the exchangeable entitle-
ments arm, there is limited scope for heterogeneity in WTA. However, as take-up varies by
offers in the prices arm, we can estimate heterogeneity in WTP.

To do so, we split our main sample based on the few covariates that are determined before
the experiment, re-estimate our demand curves as described previously, and calculate the
area under these curves to obtain population average WTP for each sub-sample. Specifically,
we measure heterogeneity according to whether the household has (i) A child below 5, (ii)
A household head with more than primary education, (iii) Above median income, or (iv) A
piped water connection. Figure 5 shows the WTP estimates for each of these subgroups.

We find that WTP is meaningfully higher among households with above-median monthly
income and for households with a piped water connection. It is unsurprising that households
with higher incomes have higher WTP, and indeed, prior studies have shown that richer
households are willing to pay higher amounts for clean air (Ito and Zhang, 2020) and elec-
tricity (Lee, Miguel and Wolfram, 2020a). This may reflect the notion that WTP and ability
to pay are in better alignment in high-income households (e.g., owing to the presence of
liquidity constraints), or simply that clean water is a normal good, and poorer households
would prefer to reserve their limited income for even more basic needs (Greenstone and Jack,
2015).

The fact that households with piped water have a higher WTP than households without
is perhaps on first glance surprising. However, two simple explanations can rationalize this
result. First, in order to receive piped water, households in our sample must typically expend
both effort and funds.45 Thus, this dimension of heterogeneity could reflect the same income
dimension as discussed above. Second, households who are willing to pay for a tap are likely
to value the benefits of tap water — many of which are shared by Spring Health’s model —
highly, explaining their large WTP.

There is little evidence that the presence of a small child or education levels matters
for household WTP. This might suggest that households value benefits for older children or
adults as well, such as fewer days of missed work.

These results provide evidence that a piped water connection is not viewed by many
households as a satisfactory substitute for clean drinking water. The evidence on water

45This normally consists of a subsidized connection fee and sometimes a subsidized monthly tariff. In the
case of rural connections this may be paid to a village-level managing institution, in the case of municipal
connections to a water utility.
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quality presented in Appendix Figure A.2 suggests that piped water is not automatically a
solution to the lack of clean drinking water from the standpoint of a technocratic planner.
The evidence from WTP measures presented here suggests it is not seen as one by households
either. It is important to note here that our results do not imply that piped water in itself
is not a worthwhile investment, nor do they preclude high WTP or WTA for piped water
(see, e.g., Devoto et al., 2012). There are many benefits to piped water even if it is not safe
to drink, including convenience and access to a large volume of water for many end uses.
Our results do, however, demonstrate that piped water alone may not meet the clean water
needs of many consumers.

Figure 5: Heterogeneity in willingness-to-pay for clean drinking water
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Notes: Each bar shows the average WTP for the subset of survey households that report a particular value of four key covariates:
the presence (or absence) of children below 5 (purple), whether the household head has (or has not) completed primary education
(green); whether the household has above- (or below-) median income (light blue); and whether the household ever reports
using piped water or not (navy blue). To compute WTP, we estimate subsample-specific demand curves, as in Figure 3, and
calculate the area under the step-wise demand function using the trapezoidal method. Error bars show 95% confidence intervals
of the mean WTP, estimated using a village-wise block bootstrap. The horizontal line shows the population-average WTP,
calculated using the demand curve in Figure 3.

Heterogeneous health effects In Appendix Table D.4, we present results examining
heterogeneity in health outcomes. We do see statistically significant evidence indicating that
the health benefits of treatment in the prices arm are concentrated amongst households with
small children (the relevant point estimates for the other treatment arms go in the same
direction but are less precisely estimated). We take this as further evidence that our health
effects are driven by clean water access, as children are likely the household members who
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are most susceptible to diseases such as diarrhoea, and the presence of ill children can easily
lead parents to miss work.

6 Discussion

Drinking water policy and household valuation A key contribution of this experiment
is we are able to estimate a lower-bound of a WTA measure of the value of clean water via
revealed preference. Our lower bound estimate of INR 420 per month for clean water access
is substantial, and suggests that households would be willing to forgo at least INR 420
per month (or 5,040 annually) for free access to clean water sufficient to cover all their
drinking needs. This amount of money would more than cover the variable costs of clean
water provision. Interestingly, Odisha’s flagship cash transfer for rural farmers, Krushak
Assistance for Livelihood and Income Augmentation (KALIA), provided approximately INR
1,700 per household per month on launch (Dhillon, 2019). It may therefore be possible for
the government to repurpose some cash transfer funds to clean water provision, or even
provide opt-in choices to households. Because Odisha is far from alone in using large-scale
cash transfers, such a policy may be worth testing more widely.46

Scaling clean water delivery In this experiment, we compute the partial equilibrium
impacts of clean water access in 120 villages. However, solving the global clean water access
problem will require interventions that can be delivered at scale. While our experiment does
not speak to the logistics of scale directly, features of our intervention suggest that this may
be entirely feasible. First, our partner organization, Spring Health, is a private company
which has been delivering clean water in Odisha for more than 10 years. Second, we use cost
data from Spring Health to compute the net present value of profits under different price
levels. We plot the results in Figure 6.47

Figure 6 reveals that home delivery of clean water can be privately profitable. More-
over, under the status quo price of INR 1.4 / litre, Spring Health is only just below the
profitability cutoff we estimate. Spring Health augments its water sales income with other
revenue streams, including the sale of carbon credits generated by treating water using solar
electricity.

46Cash transfer programs exist in more than 120 low- and middle-income countries (Banerjee et al., forth-
coming), covering more than 1 billion people around the world (Niehaus and Suri, 2024). India is no excep-
tion, with flagship central schemes such as Pradhan Mantri Kisan Samman Nidhi (PM-Kisan) for farmers
and Pradhan Mantri Matru Vandana Yojana for expectant mothers (Weaver et al., 2024).

47See Appendix Table F.1 for the full set of assumptions we use in these calculations.
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Figure 6: Profitability of clean water at different prices
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Notes: This figure plots the present discounted value of annual profits from home delivery of clean water. We assume a clean
water plant has a 10-year lifespan, a discount rate of 5%, an average village size of 450 households, and average consumption
among water buyers of 237 litres / month (per the control group in the price regime), and fit the zero price point using take-up
in the free ration arm. We use our estimated extensive margin demand curve to calculate the share of households that order
at each price level, which affects total revenue and total variable costs. In light blue circles (“full cost”), we plot profits at
each price level calculated as total revenue less one-time capital costs, monthly fixed costs, and total variable costs. In purple
triangles (“Spring Health”), we subtract off capital costs, as Spring Health receives donor funding to cover these costs. Curves
are quadratic fits. Finally, we plot the Spring Health status quo price (INR 1.4 / litre) as a purple vertical line.

However, offering the low prices required for universal clean water access would not be
privately profitable. Doing so would therefore require subsidies, but our results suggest that
governments would not need to cover the fixed costs of water treatment plants. Even were
they to do, perhaps in the interests of scaling up rapidly, the costs are substantially lower
than building an extensive piped water network. As a result, we expect that home delivery
of clean water is likely to be feasible to scale.

Indeed, the private provision of clean water is proliferating in low-and-middle-income
countries (Cohen and Ray, 2018), with decentralized water kiosk and home delivery models
like that used by Spring Health becoming increasingly common (Advani et al., 2011; Brown
et al., 2011; Daly et al., 2021). The growth of non-tap alternatives reflects some attractive
characteristics of this source of clean water. Decentralized treatment and home delivery of
drinking water has much lower capital and maintenance costs than piped water, such that it
can even be profitably supplied by private providers like our implementation partner. This
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allows the possibility of rapidly reaching geographies or households who do not yet have safe
piped water.48

Cost-effectiveness Our data suggest that providing clean water at high prices can be
privately profitable. However, our estimated demand curve and associated WTP predicts
that, at these prices, only a small fraction of households will buy water. These results
therefore explain why the private market has not fully solved the clean drinking water access
problem. Thus, in order to achieve universal access to clean water using this approach, the
state likely needs to cover all or most of the variable costs of water supply.

Importantly, state spending on most preventive health interventions is not based on WTP
alone. Rather, the cost-effectiveness of such interventions is typically tested by quantifying
expected gains in Disability-Adjusted Life Years (DALYs), and comparing the cost per DALY
to standard benchmarks (e.g., 1× per-capita GDP from World Health Organization (2020)
or USD 500 for low- and middle-income countries from Jamison et al. (2018)). Though this
valuation is not directly revealed by households themselves, it reflects a social planner who
places a high value on universal safe drinking water, for example due to positive externalities
such as reduced water-borne disease transmission. By using GDP rather than wages, the
WHO benchmark also seeks to capture societal multiplier effects.

We therefore calculate the cost per DALY saved and the net benefits of clean water
delivery to measure cost effectiveness. We did not measure child mortality in this study, as
we would not have been powered to detect meaningful effects on this rare event. Instead,
we rely on Kremer et al. (2023)’s meta-analysis of the effects of clean water on under-5
mortality. We ignore all other benefits of clean water, including health impacts on adults,
or reductions in missed work, making this a conservative calculation. Appendix G provides
the full details of these calculations, under three different Spring Health policy scenarios,
point-of-collection chlorine treatment as in Kremer et al. (2011b), and maternal child health
center chlorine coupon distribution as in Dupas et al. (2016).

Our first Spring Health scenario (“full subsidy”) simulates bringing Spring Health water
to as-yet-unserved locations and providing 100% subsidies to all households. Our second
Spring Health scenario (“targeted”) simulates bringing Spring Health water to as-yet-unserved
locations and providing 100% subsidies only to households with children under the age of 5.
Our third Spring Health scenario (“targeted, no FC”) simulates providing 100% subsidies for
water for households with children under 5 in a village where Spring Health or a comparable
service already exists, thus eliminating fixed costs. In these three scenarios, we adjust the

48An imperfect but helpful analogy is the role of decentralized solar micro-grids as an electricity source
for the poor against the back-drop of slow progress in centralized grid expansion (Burgess et al., 2023).
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benefits of Spring Health water downwards to account for the fact that water delivery was
not available in 12.3% of our sample months. In a final Spring Health scenario (“full service”),
we present a version of the “targeted, no FC” scenario but instead assume that water delivery
is available 100% of the time. Our Chlorine (“dispeners”) and Chlorine (“MCH coupons”)
scenarios use take-up and cost estimates from Kremer et al. (2023), but we adjust the
underlying GDP per capita, number of children per household, and under-5 mortality rate
to match the Odisha context. All cost numbers include 5 years of water treatment.

Figure 7 presents the results, with further details in Appendix Table G.1. The top panel
plots the cost per DALY under each scenario, compared to the standard 1× per-capita GDP
cost-effectiveness threshold (Bertram et al., 2021) and a $500-per-DALY threshold proposed
by the World Bank for LMICs (Jamison et al., 2018). The bottom panel plots net benefits
per child, valuing each DALY at 1× per-capita GDP and comparing this to the cost of clean
water provision.

We estimate a cost per DALY of Spring Health water ranging from USD 71 (full service)
to 226 (full subsidy). In this setting, dispensers cost USD 106 per DALY, and chlorine
coupons cost just USD 33. All five measures are far below both the WHO- and World-Bank-
proposed cost-effectiveness thresholds, with even the most expensive Spring Health scenario
over 9 times lower than the 1× GDP-per capita threshold and the cheapest Spring Health
scenario 25 times lower than this mark. We find that net benefits from all scenarios are high,
with dispensers generating USD 894 in welfare gain per child, chlorine coupons generating
USD 673 in gains, and Spring Health water generating between USD 1,821 and 2,256 in net
gains. The net benefits from Spring Health water are meaningfully higher than from chlorine
in this setting due to large differences in take-up: 89–90% for Spring Health versus 36% for
dispensers and 26% for coupons, even though the cost of provision per child is meaningfully
lower for chlorine (USD 56 for dispensers and USD 13 for coupons) than Spring Health water
(USD 93 – 261). Broadly, these results suggest that both chlorine and home delivery of clean
water pass a cost-benefit test with flying colors, and highlight the value of increasing take-up
of clean water.
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Figure 7: Cost-effectiveness of clean water
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Mechanisms for allocating water Finally, our results shed light on whether policy-
makers should use rations or price mechanisms to allocate clean water, in the tradition of
Weitzman (1977). While standard economic theory tells us that prices optimally allocate
resources, rations and in-kind transfers are widely used: more than 90% of low-income coun-
tries’ social safety nets include in-kind transfers (Gentilini, Honorati and Yemtsov, 2014).
These zero-price mechanisms are used to distribute a series of subsistence goods, including
food (Cunha, de Giorgi and Jayachandran, 2019; Gadenne, 2020; Gadenne et al., forthcom-
ing) and electricity (Jack and Smith, 2020). While determining which approach is preferred
is a complicated public finance question (Gadenne and Singhal, 2024), the classic argument
against rationing is that (i) rations fail to allocate scarce resources to those with the highest
demand; and (ii) rations lead to waste.

In our setting, preferences for clean drinking water appear to be stable, relatively ho-
mogenous, and we find little evidence of waste under free distribution, in the sense that
households order less than the ration limit. Under these conditions, free distribution may
be a reasonably efficient way of allocating clean water to the poor. This approach can be lo-
gistically easier than subsidized pricing and our experiment suggests households value water
highly enough to justify such a policy. Furthermore, over and above household valuation,
there are arguably positive externalities to ensuring universal access to clean drinking water
(e.g., reduced transmission of water-borne diseases).

That said, from Table 3, our local average treatment effects on health appear to be
strongest in the discount group. This suggests that higher-WTP households may enjoy
larger health benefits from clean water (as also shown for rural electrification in Lee, Miguel
and Wolfram, 2020b). Replicating and investigating this result in future studies would be
valuable, especially because other important preventive health investments have not shown
higher benefits when sold rather than given away (Cohen and Dupas, 2010). One reason
why water may be different is that maximizing the health benefits of drinking water likely
requires complementary investments from households, including proper sanitation behaviour
and keeping utensils and containers clean.

7 Conclusion

In this paper, we conduct a randomized trial to study a novel approach to addressing the
global clean water access problem: home delivery of safe, pleasant-tasting drinking water.
We use this experiment to provide two valuation measures. We produce what are, to the
best of our knowledge, the first direct experimental revealed-preference measures of both
households’ willingness-to-pay and willingness-to-accept for clean water.
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Both our willingness-to-pay and our willingness-to-accept measures demonstrate that
households value clean drinking water highly. Our estimated willingness-to-pay is several
times higher than previous work on water in the literature, which has either estimated this
quantity indirectly or instead observed demand for point-of-use purification as opposed to
clean water. We show that a lower-bound on the willingness-to-accept is higher still, con-
sistent with classic theoretical predictions for valuation in the absence of substitutes. Our
results highlight both the importance of directly measuring the good in question when valu-
ing environmental quality and the importance of measuring both willingness-to-pay and
willingness-to-accept in order to interpret consumer demand in environmental and develop-
ment settings.

In addition to our findings on valuation, our intervention generated near universal and
sustained take-up at low prices. Although we are unaware of a similar evaluation in the
literature, our intervention is informed by an emerging private market for clean water delivery
targeted at the poor. We therefore suggest that decentralized treatment and home delivery
of clean water should be given serious consideration as a solution to arguably one of the
most important health risks of our time — lack of access to clean drinking water.

This approach to increasing clean water access appears to be both sustainable and
scaleable. Our cost-effectiveness analysis suggests that free provision of clean water would
be strongly welfare-improving. Moreover, cost data from our implementation partner sug-
gests that water sales using decentralized treatment and home delivery can even be privately
profitable at high prices. As a result, governments could likely scale clean water access
substantially simply by providing rebate vouchers to private providers in order to reduce
consumer prices to zero.

There are important benefits to the two approaches most commonly studied to date.
Chlorine treatment at home is still the cheapest way to remove coliform from water and
tablets and solutions are easy to distribute even in very remote areas. Piped water is very
convenient and if it can be kept clean, it has the potential to ensure all water used by the
household is safe, limiting spillover contamination. However, it is clear that neither option
is a universal solution in the short-or-medium term. Consequently, it would be very valuable
to build a greater body of evidence on directly and conveniently providing drinking water at
home, cleaned using decentralized treatment.
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A Additional context

A.1 Taste testing

We conducted a set of taste tests with five different water samples where the testers included
9 local survey enumerators. The purpose of these tests was to evaluate whether there was
any indicative evidence in our setting for the commonly cited concern about the taste of
water purified with point-of-use chlorine tablets or solution. These tests had separate IRB
approval from the University of Chicago under Protocol No. IRB23-1363.

Subjects were asked to drink a cup of water labeled “Sample A,” (this was Bisleri, a
leading bottled water brand) and think of it as a score of a 5 on a 1-10 taste scale. Then,
subjects received four more blind water samples (“B” through “E”), presented in a randomized
order, and asked to rate each sample on the same 1-10 scale. Respondents could return to
Sample A whenever they wanted. The other samples were: Bisleri water where we added
locally-available chlorine treatment solution added as per the dosing instructions on the
packet; tap water with chlorine added; Spring Health water with chlorine added; and regular
Spring Health water.

Appendix Figure A.1 plots the results of the taste test. Households rated all chlorinated
sources at least 1 full point worse than Bisleri, and rated the treated water of our treatment
(Spring Health) slightly better than Bisleri. 100% of respondents reported that one of the
chlorinated water samples was their least preferred, and none reported that a chlorine-treated
source was their most preferred.

Figure A.1: Water taste tests
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Notes: This figure plots the results from 9 water taste tests we conducted in Odisha (with separate IRB approval from the
University of Chicago, IRB23-1363). All respondents were provided a sample of Bisleri, a standard bottled water. They were
then provided four other sources in a randomized order: tap water treated with chlorine (per packet treatment instructions);
Bisleri water treated with chlorine; Spring Health water treated with chlorine; and Spring Health without chlorine. Subjects
were asked to compare each water source to Bisleri on a 1-10 scale, with Bisleri set to 5. Here, we plot the mean difference
between the score of each source and the reference Bisleri. 100% of respondents ranked a chlorine-treated water source last.
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A.2 Lab water quality testing

We sent 19 water samples, drawn from our treatment villages, for water quality testing at
the State Water Testing Laboratory R.W.S&S. This laboratory is used by the Odisha gov-
ernment for official water quality measurements. We collected 8 open well samples, 6 tube
well samples, 4 tap water samples, and 1 Spring Health sample. Each sample was evaluated
on heavy metals and biological contaminants. Appendix Figure A.2 plots the share of sam-
ples deemed “unnacceptable” (i.e., worse than the “acceptable” threshold) across open wells,
tube wells, taps, and Spring Health. None show evidence of heavy metal contamination.
All but the Spring Health water show at least some unacceptable pH levels and biological
contamination. Our implementation partner Spring Health also tests their water at regular
intervals so this exercise was primarily intended to be informative about other sources.

Figure A.2: Water lab testing results
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Notes: This figure plots the results from testing water sampled in our experimental villages. Lab testing was conducted by
the State Water Testing Laboratory R.W.S&S, Odisha, in Bhubhaneshwar. We collected 8 open well samples, 6 tube well
samples, 4 tap water samples, and 1 Spring Health sample. Samples were classified as “unacceptable” per lab thresholds for
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contaminants (shades of blue).
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Figure B.1: Study village locations

Odisha

SH district

Survey village

Notes: This figure plots the location of our study villages within India. The green-shaded districts plot the state of Odisha.
Our experiment took place in the six dark-green Spring Health districts plotted in the extruded view. The precise location of
our experimental treatment villages (i.e., those where we conducted surveys, excluding the pure control) are denoted by orange
circles.

B Additional experiment details
This Appendix presents additional details about the experimental design and implementa-
tion. Appendix Figure B.1 plots the location of our study sample within India. The extruded
view shows these districts in the context of Odisha, with the 120 treatment villages shown
in orange circles.

Within each treatment village, we randomized households into sub-treatments or the
control using scratch cards. The top panels of Appendix Figure B.2 shows a sample scratch
card. All scratch cards were identical on the outside, save a unique ID number that linked
scratch cards to treatment status. This mapping was known to the research team but not
to the field staff. The bottom panel of Appendix Figure B.2 shows a photo of the scratch
card in use.

Our experiment took place between May 2022 and October 2023. Appendix Figure B.3
shows the experiment timeline in the form of a Gantt chart. For logistical reasons, the sample
was divided into phases or“implementation waves” (W1–W8 on the chart). At the start of
each wave, scratch cards were delivered to households, with treatment offers beginning the
following month. All treatment households were told their offers were valid for five months.
As we obtained additional funding, at the end of these five months, we informed waves
W3–W8 that their offers would be extended by two months. We also conduct five surveys
(four short “high-frequency” checks designed to capture health and a longer endline) with a
randomly-selected subset of households in each village. These are described in more detail
in Section 4.
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Figure B.2: Sample scratch card

Notes: This figure shows the promotional scratch card used to randomize households into treatments. The
top panels show an example scratch card. On the left, we show the front of the card, which is common
among all offers. On the right, we show the back of the card, which differs across offers (the white portion
was hidden behind a scratch-off cover). The bottom panel shows a photograph of the real scratch cards.
Each scratch card contained a unique ID, known to the research team but not to the field staff.
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Figure B.3: Experimental timeline

Notes: This figure shows the experimental timeline in the form of a Gantt chart. W1–W8 refer to “im-
plementation waves,” the staggered treatment roll-out. Randomization was stratified by wave. This figure
shows when the scratch card distribution (and thus, the listing data collection) took place; the 5 (W1, W2)
or 7 (all other waves) months of treatment offer validity; and the timing of all surveys. We conducted four
high-frequency surveys (HFS-1 – HFS-4), and a longer endline survey for all villages in each wave.
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C Experimental integrity
This section discusses the integrity of the experiment, including balance and compliance.

C.1 Balance

Due to logistical constraints with our partner organization, we were unable to conduct a
baseline survey prior to the start of the experiment with our earliest survey conducted during
the first month of offers. We therefore test for balance using using data from our endline
survey on demographic and other variables that we do not expect to change as a result of our
treatments: household size, whether the household contains young children, the household
head’s education level, years the household head has lived in the village, and ownership of
expensive appliances. Appendix Figure C.1 presents the means of these variables for each
experimental group, p-values from pair-wise balance tests between each group. We find
neither economically meaningful nor statistically significant differences between treatment
arms on any variables. Because we check for balance using the endline data, the results
presented in Appendix Figure C.1 account for attrition by construction.
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Figure C.1: Experimental balance
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Notes: This figure shows experimental balance. Bars show average values for survey households in each treatment arm for
six covariates. From top-left, these are: A dummy for the presence of a child below the age of 5 in the household, number of
household members (with minimum and maximum values rescaled to lie between 0 and 1 for graphical convenience), a dummy
for whether the household owns a refrigerator, a dummy for whether the household owns a two-wheeler/motorcycle, a dummy
for whether the household head has at most a primary education, and the number of years the respondent has lived in the
village (also rescaled for graphical convenience). We also conduct pairwise t-tests between each of the three main treatment
arms and the control. Brackets show p-values with a Hommel adjustment for multiple comparisons.
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C.2 Compliance

Midway through the experiment, our implementation partner had to deal with a period
of increased operational and staffing challenges, partly caused by losses in revenue flow
from sales of carbon credits, or by factors unrelated to the experiment such as flooding
in some villages, wells running dry, or the franchise entrepreneurs operating the treatment
arm choosing to quit. As a result in some months (and for some villages) the company
temporarily paused operations. At these times water orders by all households are zero by
definition. Figure C.2 shows that for the majority of villages, water delivery was available
for 100% of scratch card offer months; across the sample, water delivery was available for
87.7% of village-months.

Figure C.2: Water delivery non-compliance
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Notes: This figure plots histograms of the number of months households in each village were actually able to order water from
Spring Health, divided by the intended offer duration, for each of our treatment arms. For example, households in a village
with an offer duration of 7 months where Spring Health only operated for 5 months have a share of 5

7
= 0.71. Each observation

is one village.

In our demand analysis, we exclude months where water was not delivered, as we are
interested in households’ take-up and usage of clean water under different allocation regimes,
and months without a functioning seller reveal no information about demand for water or
valuation. When conducting our cost-effectiveness analysis, we account for the fact that
Spring Health deliveries did not occur 100% of the time.

C.3 Exchangeable entitlement payments

We might be concerned that households in the exchangeable entitlement arm chose to order
water rather than receiving cash payments because they did not think they would actually
be paid. This is a particular issue because while water arrives at the time of ordering, the
rebate for which households were eligible could only be calculated at the end of the month.
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In addition, because transfers were often very small, our implementation partner sometimes
clubbed payments for multiple months together creating delays.

If trust is a concern here then we would expect that households would change their
ordering behavior following the first payment since this transfer makes it clear that the
rebate offer was real. We therefore carry out an event study style analysis, using only
exchangeable entitlement households to estimate the equation below:

Yit =
30∑

d=−30

βd1[Days to payment = d]it + αi + εit (C.1)

where Yit are water orders by exchangeable entitlement household i on date t.
1[Days to payment = d]it is an indicator equal to 1 if household i is d days from payment
on date t, αi are household fixed effects, and εit is an error term, clustered at the village
level. We restrict the sample to days around the first time households are paid, to avoid
contamination of the pre-period in subsequent months, and because the first payment is
where we are most likely to see trust related effects. Appendix Figure C.3 plots the results.
We find no evidence of changes in water ordering behaviour at the timing of payment.

Figure C.3: Effect of payment on water orders in the exchangeable entitlement arm
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Notes: This figure plots changes in daily water orders among exchangeable entitlement households only, relative to 1 day before
the timing of the first rebate payment. We estimate these coefficients using Equation C.1, which includes household fixed effects.
Confidence intervals are derived from standard errors which are clustered at the village level.
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D Additional results

D.1 Sub-treatment-specific effects

Dynamic effects by sub-treatment Figure 4 plots the effects of treatment on water
prices as a function of months since the beginning of treatment. In this main text figure,
we pool across sub-treatments. Appendix Figure D.1 presents results for each sub-treatment
separately. As in Figure 4, we find that demand is very stable across time for all sub-
treatments.

Figure D.1: Water orders event study (unpooled)
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Notes: This figure plots the effect of our treatments on water orders as a function of time since treatment started (with the
first month offers were active set to 1), estimated using a sub-treatment-specific version of Equation (2). Standard errors are
clustered at the village level. 35 villages — the first enrolled in the experiment — had only 5 months of treatment, while the
remainder had 7. The sample is restricted to months when deliveries occurred.

Health effects by sub-treatment Appendix Table D.1 the intent-to-treat effects of offers
on health outcomes using a version of Equation (3) that estimates a separate coefficient for
each sub-treatment arm. Point effects are negative across sickness, health expenses, and
missed work outcomes. Standard errors are larger with the most precisely estimated effects
on sickness and missed work measures in the discount group although we cannot reject
equality of treatment effects across most treatment arms. Nevertheless, it is interesting that
the sub-group facing the highest price signal – namely the 10% discount group – also shows
the largest treatment effects on these outcomes, suggestive of high prices perhaps inducing
screening behaviour or impacts on complementary sanitation activities.
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Table D.1: Effect of treatment offers on health, unpooled

Sickness Health Expenses Missed Work Symptoms

(1) (2) (3) (4) (5) (6) (7) (8)

10% Discount -0.14 -32.58 -0.08 -0.03 -0.02 -0.03 -0.02 -0.06
(0.05) (28.51) (0.02) (0.01) (0.02) (0.02) (0.01) (0.02)

50% Discount -0.11 -20.67 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03
(0.05) (31.99) (0.03) (0.01) (0.03) (0.02) (0.01) (0.03)

90% Discount -0.09 -2.72 -0.02 -0.02 -0.02 -0.02 0.00 -0.03
(0.06) (32.35) (0.03) (0.01) (0.02) (0.02) (0.01) (0.03)

10% Rebate -0.11 8.80 -0.08 -0.02 -0.06 -0.04 -0.02 -0.01
(0.10) (56.41) (0.07) (0.03) (0.04) (0.02) (0.04) (0.04)

50% Rebate -0.13 -87.78 -0.09 -0.04 -0.07 -0.04 -0.03 -0.03
(0.11) (79.75) (0.06) (0.02) (0.04) (0.04) (0.03) (0.04)

90% Rebate -0.19 -86.53 -0.15 -0.03 -0.07 -0.06 -0.02 0.00
(0.08) (58.70) (0.05) (0.02) (0.04) (0.03) (0.03) (0.04)

100% Rebate -0.12 -75.82 -0.06 -0.03 -0.04 -0.03 -0.02 -0.04
(0.09) (56.28) (0.05) (0.02) (0.03) (0.03) (0.03) (0.04)

Free Ration -0.07 -30.46 -0.05 0.00 -0.01 -0.03 0.00 -0.02
(0.06) (37.03) (0.03) (0.01) (0.02) (0.02) (0.01) (0.03)

N 4,670 4,433 4,670 4,670 4,670 4,670 4,670 4,670
Control Means 0.516 239.507 0.2 0.044 0.159 0.108 0.053 0.223

Notes: This table presents intent-to-treat effects of our treatment offers on health outcomes, estimated
using Equation (3), and unpooled to provide estimates for each sub-offer arm of the main treatment
arm. We restrict the sample to months when water delivery occurred and drop the top 1 percent of
health expenses to remove large outliers. In column (1), the outcome is an indicator for the number
of household members being sick in the past week. In column (2), the outcome is household spend-
ing on health in the past week in INR. In column (3), the outcome is an indicator for the number of
household members missing work due to illness in the past week. In columns (4)–(8), the outcome is
an indicator for a household member reporting symptoms of vomiting, fever, stomach ailments (gastric
pain/abdominal pain/diarrhea), flu symptoms (cough/congestion/headache/fatigue), and other symp-
toms (e.g., skin infection, joint pains, etc). All regressions include village and month-of-sample fixed
effects. Standard errors are clustered by village.

D.2 Survey evidence on clean water use

We use our survey data to corroborate our demand results. Using Equation (3), we estimate
the effect of our water treatment offers on the number of drinking water sources used by the
household, whether the household drinks any clean water, and whether the household drinks
only clean water. Appendix Table D.2 reports the results. We find large and significant
impacts of all treatments on all three outcome variables. We restrict data to months where
water was sold and to households reporting at least one drinking water source since some
households did not report any sources during one or more survey rounds.
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Table D.2: Effects of treatment on water use: survey data

Number of sources Drinks SH water Only drinks SH water
(1) (2) (3)

Prices (Discounts) 0.34 0.34 0.09
(0.06) (0.03) (0.02)

Exchangable entitlements 0.75 0.77 0.25
(0.09) (0.04) (0.03)

Free ration 0.61 0.63 0.17
(0.09) (0.04) (0.03)

N 5,285 5,276 5,285
Control means 1.443 0.004 0.001

Notes: This table presents intent-to-treat effects of water offers on consumption of Spring Health water, esti-
mated using Equation (3). Column (1) presents the effect on the number of drinking water sources, Column
(2) report drinking any Spring Health water, and Column (3) reports only drinking Spring Health water. We
restrict the sample to village-months where Spring Health delivered water. All regressions include village and
month-of-sample fixed effects. Standard errors are clustered at the village level.

D.3 Intent-to-treat effects on health

Appendix Table D.3 reports intent-to-treat effects on self-reported health outcomes. The
first three columns show impacts on overall health: Column 1 presents treatment effects on
the number of household members reported being sick in the past week; Column 2 presents
treatment effects on weekly health expenditures; and Column 3 reports treatment effects on
whether any household member had to miss work due to sickness in the past week. Average
illness in this population is high, with 52% of individuals in control households reporting
having been sick in the last week; mean health spending in the control group of INR 240
(10% of average expenditure), and 20% of control households reporting that a household
member needed to miss work due to illness in the past week.

We see meaningful improvements in these measures of health, though our estimates are
not always precise. The point estimates of measures of reported sickness correspond to
reductions of 21% (FDR-adjusted p = 0.02), 27% (FDR-adjusted p = 0.15), and 14% (FDR-
adjusted p = 0.29) in the price arm, exchangeable entitlement arm, and free ration arm,
relative to control. The estimated effects on weekly health expenses are all very noisy,
though point estimates are negative and imply meaningful reductions in monthly spending
– between 17% and 61% of our estimated WTA.49 Finally, we estimate substantial declines
in missed work, though again, these are only different from zero at conventional levels in the
prices arm: 20% (FDR-adjusted p = 0.05), 45% (FDR-adjusted p = 0.15), and 25% (FDR-
adjusted p = 0.24) for prices, entitlements, and rations, respectively.50 Finally, columns 4
through 8 present results on various individual symptoms. Because our goal was to measure

49Regression estimates are, per our survey question, on health spending in the past week. We thus scale
by 4 when comparing to our estimated WTA for monthly clean water access.

50We did not test for infant mortality, as our sample is too small to detect effects on this rare outcome
(Kremer et al., 2023).
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treatment effects on water-borne disease, all symptoms included in the survey could have
plausibly been improved by clean water; we did not include placebo measures such as broken
limbs in the survey. Though these treatment effects are imprecisely measured, the broad
pattern of point estimates suggests weak evidence of reductions in specific illnesses.

Taken together, our intent-to-treat results corroborate our household demand estimates:
households report experiencing meaningful improvements in health as a result of our clean
water offers. Because our offers broadly move households on the extensive, rather than
intensive, margin of clean water use, to understand the effect of clean water access on health
requires estimating a local average treatment effect. Put differently, simply scaling the
results in Appendix Table D.3 by quantities ordered in litres (Column (3) of Table 1) does
not yield a dose-response function, because differences in quantities across treatment arms
are driven by selection into consumption. This is directly addressed in the instrumental
variables estimates in the main text.

In Appendix D.4, we take advantage of the occasional service disruptions discussed in
Section 3.6 to carry out a further robustness check, re-estimating these specifications using
only observations from months when water sales were disrupted. If our health effects are
indeed driven by access to clean drinking water, they should be significantly attenuated or
disappear entirely in months where households could not obtain this water. Appendix Table
D.5 demonstrates that this is broadly the case. We also do not find evidence that health
meaningfully worsens during these service disruptions, suggesting that disruptions are not
more costly than the absence of clean water itself, though with the caveat that this test relies
on a relatively small and selected sub-sample of villages.

Table D.3: Intent-to-treat effect of water offers on health

Sickness Health expenses Missed work Symptoms

(1) (2) (3) (4) (5) (6) (7) (8)

Prices (Discounts) -0.11 -18.25 -0.04 -0.03 -0.02 -0.02 -0.02 -0.04
(0.04) (21.90) (0.02) (0.01) (0.02) (0.01) (0.01) (0.02)
[0.02] [0.41] [0.05]

Exchangeable entitlements -0.14 -64.49 -0.09 -0.03 -0.06 -0.04 -0.02 -0.02
(0.08) (53.87) (0.05) (0.02) (0.03) (0.03) (0.03) (0.03)
[0.15] [0.23] [0.15]

Free ration -0.07 -30.39 -0.05 0.00 -0.01 -0.03 0.00 -0.02
(0.06) (37.00) (0.03) (0.01) (0.02) (0.02) (0.01) (0.03)
[0.29] [0.41] [0.24]

N 4,670 4,433 4,670 4,670 4,670 4,670 4,670 4,670
Control Means 0.516 239.507 0.2 0.044 0.159 0.108 0.053 0.223

Notes: This table presents intent-to-treat effects of our treatment offers on health outcomes, estimated using
Equation (3. In column (1), the outcome is the number of household members being sick in the past week. In
column (2), the outcome is household spending on health in the past week in INR. In column (3), the outcome is
an indicator for the number of household members missing work due to illness in the past week. In columns (4)–
(8), the outcome is an indicator for a household member reporting symptoms of vomiting, fever, stomach ailments
(gastric pain/abdominal pain/diarrhea), flu symptoms (cough/congestion/headache/fatigue), and other symptoms
(e.g., skin infection, joint pain, etc.). We restrict the sample to village-months where Spring Health delivered wa-
ter, and drop the top 1 percent of health expenses to remove large outliers. All regressions include village and
month-of-sample fixed effects. Standard errors are clustered by village. FDR-adjusted p-values in brackets.
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D.3.1 Heterogeneous treatment effects

We test for heterogeneous treatment effects on health (across all treatment arms) using the
following specification:

Yit = β1Any discounti + β2Any discounti × Covariatei
+ β3Any exchangei + β4Any exchangei × Covariatei
+ β5Free rationi + β6Free rationi × Covariatei
+ Covariatei + γv + δt + εit (D.1)

where Yit is an indicator for any ill household member in the previous week, spending on
health in the past week, or an indicator for any household member having missed work in the
past week due to illness. Covariatei are household characteristics: an indicator for children
below 5 in the household; a dummy for whether the household head completed at most
primary education; a dummy for ever reporting the use of piped water during any survey
round; and a dummy for above-median income; above- vs. below-median monthly household
income (binned) in the first survey. γv and δt are village and month-of-sample fixed effects,
and εit is an error term, clustered at the village level. We restrict the sample to households
in price treatment villages.

Appendix Table D.4 presents heterogeneity in health intent-to-treat effects. We see sta-
tistically significant evidence that the benefits of treatment in the Prices arm on the various
health outcomes are concentrated amongst households with small children. Health expenses
also slightly higher amongst higher-income households. We view the first of these facts as
further evidence demonstrating that our health effects indeed result from clean water access,
as children are likely the most susceptible to diseases such as diarrhoea, and their illnesses
can plausibly lead to parents missing work.
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D.4 Placebo effects on survey outcomes

In Appendix C we present data on non-compliance during the experiment, showing that
water was not delivered (sold) by our implementation partner in only 12.3% of village-
months during our sample period. Our broad policy in the field was not to conduct surveys
in these village-months, both because households could not place orders and in some cases
because our partner advised us about household sensitivities where they had suddenly ceased
operations. That said, we did conduct a small number of surveys in these months, typically
because we were not informed of operational disturbances in advance.

We thus run a set of regressions using Equation (3), restricting the sample to the village-
months where water distribution was halted. With the (significant) caveats that the dis-
ruption itself could affect household responses and the fact that these village-months are
not representative of the broader sample, this exercise provides a useful placebo test of the
impact of clean water on health.

Table D.5 presents the effects of water offers on health during months when Spring
Health deliveries were unavailable, broken out by sub-treatment arm. We see no evidence
of improvements in health outcomes (i.e., negative treatment effects) in these months. For
the exchangeable entitlement and free ration groups, the point estimates appear attenuated,
albeit noisy. Perhaps surprisingly, we see a positive effect on health outcomes (i.e., households
report being sicker than the control) in the 90% discount group. However, we see no similar
effects in the other discount groups. Thus, it is likely that this is driven by idiosyncratic
differences in health outcomes in a few households given the relatively small sample size we
are left with in this regression (393 household-month observations with 6 discount group
villages, 4 exchangeable entitlement villages, and 5 free ration villages).
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Table D.5: Placebo intent-to-treat effect of water offers on health

Sickness Health Expenses Missed Work Symptoms

(1) (2) (3) (4) (5) (6) (7) (8)

10% Discount 0.04 -47.86 0.04 -0.01 -0.05 0.07 0.00 -0.02
(0.07) (47.25) (0.03) (0.03) (0.03) (0.06) (0.00) (0.05)

50% Discount 0.03 119.90 0.06 -0.01 -0.02 0.14 0.03 -0.01
(0.13) (131.35) (0.04) (0.02) (0.07) (0.06) (0.03) (0.02)

90% Discount 0.26 265.76 0.28 -0.03 0.11 0.12 0.03 -0.03
(0.09) (108.50) (0.09) (0.02) (0.06) (0.05) (0.02) (0.06)

10% Rebate 0.03 19.63 -0.09 0.00 -0.02 0.01 0.01 -0.01
(0.12) (73.29) (0.06) (0.00) (0.10) (0.07) (0.07) (0.09)

50% Rebate -0.32 -106.05 -0.09 0.00 -0.18 -0.05 -0.05 -0.19
(0.18) (58.69) (0.06) (0.00) (0.13) (0.05) (0.05) (0.10)

90% Rebate 0.18 158.72 0.44 0.00 0.02 0.04 -0.05 -0.03
(0.33) (281.73) (0.12) (0.00) (0.16) (0.02) (0.05) (0.13)

100% Rebate -0.09 -157.64 0.03 0.08 -0.14 0.03 -0.05 -0.15
(0.27) (102.84) (0.10) (0.05) (0.13) (0.10) (0.05) (0.13)

Free Ration -0.18 -74.84 -0.01 0.00 0.02 -0.08 0.05 -0.08
(0.19) (84.95) (0.10) (0.02) (0.07) (0.08) (0.02) (0.07)

N 393 361 393 393 393 393 393 393
Control Means 0.423 250.417 0.109 0.044 0.131 0.102 0.007 0.197

Notes: This table presents intent-to-treat effects of our treatment offers on health outcomes, estimated using Equation
(3), on only the sample of village-months where water distribution was halted. In column (1), the outcome is the number
of household members being sick in the past week. In column (2), the outcome is household spending on health in the past
week in INR. In column (3), the outcome is an indicator for the number of household members missing work due to illness
in the past week. In columns (4)–(8), the outcome is an indicator for a household member reporting symptoms of vomit-
ing, fever, stomach ailments (gastric pain/abdominal pain/diarrhea), flu symptoms (cough/congestion/headache/fatigue),
and other symptoms (e.g., skin infection, joint pain, etc.). We drop the top 1 percent of health expenses to remove large
outliers. All regressions include village and month-of-sample fixed effects. Standard errors are clustered by village.
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E Pure control households vs. control households in treat-
ment villages

In this Appendix, we compare household water orders in pure control villages to water orders
in control households in treatment villages. We restrict the sample to households who place
orders for water, because while we have a full listing of potential customers in the treatment
villages (i.e., we observe households both ordering and not ordering water), in the pure
control villages, we only observe households who order water.

To carry out this comparison, we first run a regression of the following type on pure
control and control consumers:

Yit = α + β1 · 1[Treatment village]v + δt + εvt (E.1)

where Yit is the total water orders or the mean order size of consumer i in month t,
1[Treatment village]v is a dummy that takes the value 1 if consumer i is a control household
in one of the treatment villages and 0 if they are a consumer in a pure control village.

We also run a variant of this regression to compare the number of unique control-group
consumers in treatment vs. pure control villages at the village-month level as below:

Nvt = α + β1 · 1[Treatment village]v + δt + εvt (E.2)

where Nvt are the total number of consumers in village v in month t, counting only control
consumers in treatment villages and all consumers in pure control villages. 1[Treatment village]v
is a dummy that takes the value 1 if village v is a treatment village and 0 if it is a pure
control village.

Because both types of consumers face exactly the same price, we might expect no dif-
ference in water orders. In practice, however, this is not the case. Table E.1 presents the
results. We find that consumers in the pure control villages (where no experiment activities
or surveys took place) order more water (column 1) and are more numerous (column 3) than
control condition consumers in treatment villages. However, we find that the average order
size in the two groups is similar (column 2), suggesting that pure control households order
water more often.51

There are two explanations for this divergence. The first is that there are spillovers
induced by the treatment. Such spillovers could occur if households facing full price in
villages where others have been given special offers react by reducing the probability of
placing an order and reducing how much they order. This type of spillover would lead us
to underestimate the WTP for water, because it would dampen the demand observed at
the highest price, relative to what might have been observed in the absence of treatment

51Some of the gap in the consumer count would occur because there is a smaller pool of controls in
experiment villages since 39 households were assigned to treatment offer. Because the size of villages is
large this is a small effect. The average population of villages in our sample is 460 households, balanced
across conditions by randomization. Based on this we could adjust the true consumer count difference to 22
consumers instead of 24.
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Table E.1: Water orders, control households in pure control vs. treatment
villages.

Total orders Average order Consumers
(1) (2) (3)

Experiment Village Control -45.12 -0.13 -24.32
(7.39) (0.99) (1.52)

N 14,501 14,501 638
Reference (Pure Control) Means 293.51 12.36 36.97

Notes: This table presents tests for differences between all consumers in Pure Control villages
vs. control-condition consumers in other (treatment) experiment villages following Equations
E.1 (columns 1 and 2) and E.2 (column 3). We only include households that ever ordered pos-
itive quantities of water. The outcome in (1) is mean total monthly orders in litres, (2) is the
average order size in litres, and (3) is the total number of non-zero consumers. Regressions
include month-of-sample fixed effects, and standard errors are clustered at the village level.

households. It would also lead us to slightly overestimate the intent-to-treat effects on health
outcomes, though the instrumental variable estimates should not be affected.

The other explanation for the divergence is that our implementation partner did not
market as intensively to control consumers in the treatment villages as they did to households
in the pure control villages. A difference in sales effort would render the comparison of these
two groups uninformative about behavioural spillovers, since full-price consumers would no
longer face similar seller behaviour.

We do not have direct measures of “effort,” but there is suggestive evidence that this is
the more likely explanation. The first piece of evidence comes from a comparison of control
water orders across the three arms of the experiment. Specifically, we compare water orders
across our three treatment village types among control households only:

Yit = π11[Exchangeable entitlement village]v + π21[Free ration village]v + δt + εit (E.3)

where Yit is water orders for household i in month-of-sample t, 1[Exchangeable entitlement village]v
and 1[Free ration village]v are indicators equal to one if household i resides in an exchange-
able entitlement or free ration village, δt are month-of-sample fixed effects, εit is an error
term, clustered at the village level, and the sample consists only of control households.

Table E.2 presents the results. There is no difference between control water orders across
the three arms. Point estimates are very small (0.4 or 0.5 litres per month), and not statis-
tically different from zero. Since the types of offers and number of customers ordering water
across the three arms are very different, this result implies that neither spillovers between
treatment and control households nor seller capacity constraints are likely to explain lower
control-group orders in treatment villages.52

Finally, as we discuss in Section 5, households are not re-selling clean water, so this
cannot explain reductions in orders among the control group. We also see no evidence of

52Beyond this evidence from our data, we have no independent reason to suspect capacity constraints —
delivery vans had lots of room, treatment plants could easily serve demand, and no concerns were raised by
our implementation partner.
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Table E.2: Effect of village treatment type on control
household water orders

Orders in litres

Exchangeable entitlement controls 0.51
(1.02)

Free ration controls 0.39
(0.92)

N 218,003
Dependent Variable Mean 2.818

Notes: This table presents a test of differences between water
orders among control households only between our three treat-
ment arms, estimated using Equation (E.3). The price arm is
the omitted category. The regression includes month-of-sample
fixed effects, and standard errors are clustered by village.

a consumption kink between consumers paying full price, vs a 10% discount, as seen from
the bottom-right panel of Figure 3. If anything, full price consumers order slightly more
(conditional on buying anything) than do those with a 10% discount.

More broadly, our experience in the field suggests the marketing effort explanation is more
likely. In treatment villages, our implementation partner was guaranteed more consumers
because of the discount, free ration, or entitlement cards that were provided to a meaningful
number of households. The research team fully reimbursed the implementing partner for
all subsidies, raising revenues in these villages. As a result, it is highly likely that the
implementing partner expended less marketing and sales effort among control customers
in treatment villages relative to pure control villages. For all these reasons, although we
cannot rule out either of these explanations, our hypothesis is that seller effort may be more
important than spillovers or behavioral responses by control consumers.

Nevertheless, it is straightforward to de-bias our WTP measure by re-estimating the
demand curve with the assumption that under equal effort / no spillovers (i) the number
of consumers at the highest price would rise to match levels in the pure control, and (ii)
consumers at all price levels would use additional water equal to the estimate from Column
(1) of Table E.1. Doing so leads to an adjusted WTP of INR 153, up from INR 132 in the
main experiment sample.
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F Calculating profitability
To calculate the net present value of the profits from selling clean water, we use data from
Spring Health on costs, as well as a series of assumptions, enumerated in Table F.1. We begin
by computing annual revenues and variable costs for clean water take-up levels ranging from
10 to 100% of the households in a representative village. We use the extensive-margin
demand curve to identify the price associated with each take-up share. The number of
consumers at each take-up level is simply the number of households in our representative
village multiplied by the take-up share. Annual revenue is thus simply Revenue = Price ×
Consumers×Per-consumer usage× 12, and, annual total variable costs are: Variable cost =
Per-consumer cost × Consumers × 12.53 Finally, we compute the net present value of costs
as the up-front cost of installing a water treatment plant plus annual fixed costs and annual
total variable costs over the assumed life of the plant, and compute the net present value of
revenue as annual total revenue over the life of the plant, both discounted using our assumed
discount rate. Profits are thus revenues net of costs.

53Our cost data are monthly, so we multiply by 12 to compute annual costs.
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Table F.1: Assumptions for profit calculation

Panel A: Up-front costs
Item Cost per plant (INR)
Water purifier 260,700
Tank, motor, & fittings 39,570
Plumber 3,500
Painting 15,000
Plant structure 45,000
Iron plate frame 10,000
Transportation of machine and bottles 3,000
Launching costs 12,000
Total 388,770

Panel B: Monthly fixed costs
Item Cost per month (INR)
Employee salaries 5,543
Total 5,543

Panel C: Variable costs
Item Cost per customer-month (INR)
Water bottle 21.83
Water bottle stickers 2.92
Entrepreneur commission (incl. water costs) 66.45
Delivery costs 75.31
Total 166.51

Panel D: Assumptions
Item Value
Nr. of households 450
Litres per month 237
Discount rate 5%
Plant life (years) 10
Mean villages served by each plant 1.5
Life of water bottle (years) 1
Monthly bottle rental price (INR) 66.67

Notes: This table reports the cost data and assumptions used in our profitability calculation.
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G Calculating cost-effectiveness
To calculate cost-effectiveness metrics, we follow the calculation approach laid out in Kremer
et al. (2023) for several clean water provision scenarios. For each scenario, we only consider
benefits from reduced mortality among children under 5. We do not measure this treatment
effect directly, but instead rely on the Kremer et al. (2023) meta-analysis estimate. For
all scenarios, we evaluate the intervention for the rural Odisha context, using data on the
per-capita GDP in Odisha, the number of children per household, and the under-5 mortality
rate. All cost estimates assume 5 years of water provision. Our scenarios are as follows.

We begin with the Spring Health (full subsidy) scenario. In this scenario, we assume that
all households in a village receive offers of free Spring Health water. To simulate a setting
in which Spring Health or an equivalent has not yet entered, our cost measure includes fixed
costs, and our average total costs are socialized across all households who take up clean
water. We assume the control group bought zero clean water, thus our intervention take-up
rate is the intent-to-treat effect of the free ration offer on take-up plus the average take-
up in the control group. We scale this take-up rate by the share of village-months where
Spring Health water deliveries were available during our sample period to account for service
disruptions.

Second, in the Spring Health (targeted) scenario, we only provide subsidized water to
households with children. This lowers the cost of provision per child, but because fewer
households in the village will participate in clean water, our average total costs are socialized
over a smaller number of households.

Third, our Spring Health (targeted, no FC) scenario assumes that a Spring Health water
treatment plant already exists in the village, and we provide subsidies to households with
children only. Thus, this scenario removes fixed costs, and uses the intent-to-treat impact
on take-up from the free ration arm as our intervention take-up rate.

Fourth, our Spring Health (full service) scenario repeats the (targeted, no FC) scenario,
but assumes that there are no water service disruptions (i.e., that Spring Health water is
always available).

Finally, we compare these against two chlorine scenarios: point-of-collection chlorine
dispensers, as described in Kremer et al. (2011b), and coupons for point-of-use chlorine
treatment distributed through maternal and child health services, as described in Dupas
et al. (2016). We use data on these two approaches from Kremer et al. (2023), adjusting the
relevant parameters for the Odisha context. Because Kremer et al. (2023) does not provide
information about disruptions, we conservatively assume this water is always available.

Under each scenario, we compute expected deaths averted per child under-5 as:

Deaths averted per child =
U5 mortality rate

100
× [1− risk ratio] (G.1)

× Intervention take-up
Meta-analysis compliance

× Water availability, (G.2)

cost per DALY saved as:

Cost per DALY saved =
Cost of provision
Deaths averted

÷ (DALYs per life), (G.3)
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and net benefits per child as:

Net benefits = (DALYs saved × per-capita GDP)− Provision cost, (G.4)

Table G.1 provides the values for each object in the above equations. We summarize the
cost per DALY and net benefits in Figure 7.

Table G.1: Details of cost-effectiveness calculation

Spring Health Spring Health Spring Health Spring Health Chlorine Chlorine Source
(full subsidy) (targeted) (targeted, no FC) (full service) (dispensers) (MCH coupons)

DALYs per life 79.25 79.25 79.25 79.25 79.25 79.25 World Health Organization (2020)
Under-5 mortality rate (p.p.) 4.27 4.27 4.27 4.27 4.27 4.27 Ministry of Health and Family Welfare (2022)
Odisha per-capita GDP 1797 1797 1797 1797 1797 1797 Government of India (2023)
Meta-analysis risk ratio 0.77 0.77 0.77 0.77 0.77 0.77 Kremer et al. (2023)
Meta-analysis compliance rate 0.53 0.53 0.53 0.53 0.53 0.53 Kremer et al. (2023)
Intervention take-up rate 0.90 0.90 0.89 0.89 0.36 0.26 SH: Free ration arm; Chl: Kremer et al. (2023)
Water availability 0.88 0.88 0.88 1.00 1.00 1.00 SH: Disruptions; Chl: N/A
Treated children per household 0.4 1.0 1.0 1.0 1.0 1.0 Government of India (2011)
Cost of provision, per child (USD) 261 122 93 93 56 13 SH: Appx. F; Chl: Kremer et al. (2023)

Deaths averted, per child 0.0146 0.0146 0.0145 0.0165 0.0067 0.0048 Eq. (G.2)
DALYs saved, per child 1.16 1.16 1.15 1.31 0.53 0.38 Deaths averted × DALYs per life
Cost per death averted (USD) 17, 878 8, 354 6, 421 5, 631 8, 410 2, 636 Provision cost / deaths averted
Cost per DALY (USD) 0.88 0.88 0.88 1.00 1.00 1.00 Eq. (G.3)
Net benefits (USD) 1, 821 1, 961 1, 967 2, 256 894 673 Eq. (G.4)

Notes: This table reports our cost-effectiveness calculations, including the assumptions required to carry them out. Spring Health (full subsidy) assumes subsidies are given to all households, and fixed costs, which are socialized across all households who consume, are
included. In this group, we assume control take-up is zero. Spring Health (targeted) assumes subsidies are only given to households with children, and fixed costs, which are socialized across only households with children who consume, are included. In this group, we
assume control take-up is zero. Spring Health (targeted, no FC) assumes subsidies are only given to households with children, and fixed costs are excluded (simulating a situation in which a private firm enters on its own). Spring Health (full service) assumes water is
available 100% of the time. Chlorine (dispenser) and chlorine (MCH coupons) information is taken from Kremer et al. (2023), but adjusted to use Odisha’s GDP per capita, mortality rate, and number of children per household. Throughout, we follow Kremer et al.
(2023) in using 5 years of costs. See the text for equations.
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H Deviations from our pre-analysis plan
This experiment was pre-registered with the AEA as AEARCTR-0010545.54 Though we
endeavour to follow the PAP as closely as possible, we enumerate our deviations below:

• Analysis. PAP equations (1), (2), and (3) use purely cross-sectional variation (plus
LASSO-selected controls). In the paper, we present results only using Equation (4),
a panel specification, for the sake of parsimony. Results using the cross-section are
quantitatively similar.

• Analysis. In the PAP, we pre-specified using pure control villages as robustness checks
in analysis. Because our analysis includes village fixed effects, our treatment effects are
not identified off of between-village differences, so adding pure control villages to the
regression would not change our estimates. We therefore only analyze these villages in
Appendix E.

• Analysis. On page 9 of the PAP, we pre-specified using post-double-selection LASSO
to choose controls. We do not include controls (other than fixed effects) for two reasons.
First, since we submitted our PAP, new work (Cilliers, Elashmawy and McKenzie,
2024) has arisen, arguing that selection of controls via LASSO in RCTs is essentially
useless. Moreover, even if we wanted to add controls, we only have control variables for
the subset of households that participated in our survey, so we cannot add household
observables into the administrative data regressions for the vast majority of households.

• Analysis. PAP section 4.2 proposes estimating the price elasticity of demand, both
separately for price and exchangeable entitlement arms (Equation (6)) and jointly,
with an interaction term for being in the exchangeable arm (Equation (7)). Given
the large number of zeroes in our consumption data, per Chen and Roth (2024), this
log-log specification does not deliver the quantity of interest. Following this paper’s
guidance, we therefore do not present these specifications and instead focus on the
extensive-margin effects and levels effects documented in Table 1.

• Analysis. PAP Equation (8) proposes estimating the effects of exchangeable enti-
tlements vs. discounts in a point-by-point manner. This is effectively subsumed by
Table 1, so we omit it here.

• Analysis. The PAP proposes estimating the effect of our offers on water shortages.
In our survey data, households report they ran out of water (across all uses) in the
prior week only 2% of the time. As a result, there is no margin for adjustment on this
variable, so we omit it from our analysis.

• Analysis. PAP equations (10) and (11) propose instrumenting for the quantity of
water ordered with water offers. In Table 3 (and its variants), we instead use whether
the household reports drinking any clean water for two reasons. First, this ensures that
the endogenous variable that comes from the same survey as the outcome variable.

54The registry entry is available from https://www.socialscienceregistry.org/trials/10545.
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Second, the effect of drinking any clean water is easier to understand than the effect
of ordering one unit of clean water, which must be rescaled to be meaningful. We
therefore prefer this endogenous variable.

• Analysis. In the PAP, Equations (10) and (11) use all sub-treatment arms in the
first stage. We instead present pooled IV estimates for the free ration, exchangeable
entitlement, and price arms separately, to measure differential local average treatment
effects of each offer type.

• Analysis. PAP section 4.3.3 proposes “medium-run” health effects, which use only the
health data from endline. As we show in Figure 4, water demand is stable throughout
the study. Furthermore, our endline data are collected well after the end of water
distribution for the first two implementation waves in our sample, and, as we show
in Appendix Table D.5, health treatment effects disappear in the absence of water
distribution. Thus, this endline-only exercise is unlikely to add meaningful information
and we omit it here.

• Analysis. PAP section 4.6 proposes a series of heterogeneity analyses. First, PAP
Equation (15) proposes heterogeneity on water quantity by household size, number
of children, household income, and quality of drinking water options, all measured
at baseline; above- vs. below-median liquidity constraints; an indicator for whether
agriculture is the main source of income; whether a household ever wanted to take a
loan but was unable to; above- vs. below-median consumption; and above- vs. below-
median assets. This equation also proposes a cross-sectional regression specification.
We limit the set of covariates to four: an indicator for having any children below 5 in the
home; above- vs. below-median household head education; above- vs. below-median
income; and an indicator for ever reporting using piped water for drinking during the
experiment. We do this for several reasons. First, we did not conduct a baseline survey
prior to treatment implementation, and many of the variables we intended to use in
heterogeneity could plausibly be affected by treatment. Second, given the high take-up
in both the free ration and exchangeable entitlement arm, there is limited scope for
heterogeneity. In the interest of parsimony, we therefore present heterogeneity only
along a few key covariates.
Furthermore, rather than using PAP Equation (15), which proposes estimating het-
erogeneous treatment effects on each sub-treatment, we instead measure how WTP for
clean water varies with our four covariates. Because take-up is close to 100% for the
exchangeable entitlement and free ration arms, there is no meaningful heterogeneity
in covariates, so we focus on the price arm. Estimating heterogeneity in WTP rather
than demand at each price point enables us to more parsimoniously summarize the
impact of household characteristics on demand.
We present the results in Figure 5.
As discussed above, we omit PAP Equation (16) due to concerns about log-log speci-
fications with zeroes.
PAP Equation (17) – and the subsequent un-numbered equation – propose hetero-
geneity on intent-to-treat effects and local average treatment effects of clean water on
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health. Here, we pre-specified heterogeneity by the number of children in the house-
hold, household income, quality of drinking water measured at baesline, and whether
the household treats their drinking water at baseline. We replace these covariates with
the same set that we use in our demand heterogeneity analysis, namely an indicator
for having any children below 5 in the home; above- vs. below-median household head
education; above- vs. below-median income; and an indicator for ever reporting using
piped water for drinking during the experiment. We present the results in Appendix
Tables D.4. Because we find limited evidence of heterogenous ITT effects on health,
we omit heterogeneous IV effects on health for the sake of parsimony.

• Multiple hypothesis testing. In PAP Section 4.7, we outline multiple hypothesis
testing corrections for our health outcomes. We did not measure outcomes for children,
so we omit this. We present FDR adjusted p-values for whether any household member
was sick in the past week (which is essentially a symptom index), health expenditures,
and whether anybody in the household missed work due to illness in Table D.3.

• Information intervention. In PAP Section 5, we propose testing the impacts of an
information intervention on household water demand. We will conduct this analysis
separately, and thus do not include it here.
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