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Abstract

We explore how traders’ equity capitalization influences asset prices in a frame-

work that accounts for market power. In our model, traders with capital con-

straints engage in transactions in an imperfectly competitive market. We demon-

strate that looser capital constraints elevate both asset prices and price impact,

the latter diminishing market liquidity. Using Canadian Treasury auction data,

we illustrate how to apply our model to quantify these effects. We estimate the

shadow costs of capital constraints by leveraging a temporary policy exemption

during 2020-2021. We show that while these constraints are only infrequently

binding, their relative impact when activated can be sizable.
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1 Introduction

The intermediary asset pricing literature suggests that prices depend on the equity capital-

ization of financial intermediaries who invest and trade the assets (e.g., Gromb and Vayanos
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(2002); Brunnermeier and Pedersen (2009); He and Krishnamurthy (2012, 2013); Brunner-

meier and Sannikov (2014)). In this literature, intermediaries typically face funding or capital

constraints and execute trades in perfectly competitive markets. In practice, however, in-

termediaries and other large traders enjoy market power—as documented for various trade

settings, including Treasury, repo, foreign exchange, mortgage-backed securities, and equity

securities lending markets (e.g., Hortaçsu et al. (2018); Allen and Wittwer (2023); An and

Song (2023); Chen et al. (2023); Huber (2023); Pinter and Üslü (2023); Wallen (2023)).

Our contribution is to study how equity capitalization affects asset prices and to quantify

the effects in a framework that allows for market power (as in Wilson (1979); Klemperer

and Meyer (1989); Kyle (1989); Vives (2011); Rostek and Weretka (2012); Rostek and Yoon

(2021); among others).1 We introduce a model in which capital-constrained traders buy

or trade an asset in an imperfectly competitive market, and we estimate it with data on

Canadian Treasury auctions. Differing from much of the existing asset pricing literature,

but in line with the banking literature, our emphasis lies on capital constraints that prevent

equity from falling below a specified ratio to the assets on the balance sheet, in accordance

with Basel III standards. Since the last financial crisis, this type of constraint has risen

in significance, becoming a primary concern for traders, as evidenced by surveys of market

participants and regulatory reports (e.g., CGFS (2014); CGFS (2016); ESRB (2016); Group

of Thirty (2021); ISDA (2024)), and public commentary (e.g., Baer (2020); Popowicz (2021);

Duffie (2023)).2

In the model, presented in Section 2, traders compete to buy or trade multiple units of

an asset of uncertain supply. They are risk averse and subject to a capital constraint, which

depends on the auction outcome and the amount of capital they will need to hold post-

auction. They have private information about the asset’s return. The market is imperfectly

competitive, so that each trader has price impact; it clears via one of two auction formats,

1Capital requirements aim to strengthen the risk management of banks and avoid the build-up of
systemic risks. Our analysis does not incorporate how these risks change when relaxing constraints.

2Chart 15 in ESRB (2016) lists capital requirements as the main friction affecting market-
making, above other types of constraints that have achieved more attention in the academic litera-
ture, for example, value-at-risk constraints. Table 1 in CGFS (2016) provides a summary of private
sector views about the costs of regulation, including Basel III. Group of Thirty (2021) recommends
modifications of the leverage ratio to improve resiliency of the U.S. Treasury market.
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which represent different financial markets, including primary auctions and exchanges. In

the benchmark model, dealers submit decreasing net-demand functions that specify how

much they are willing to pay for different units of the asset; the market clears at the price

at which aggregate dealer net-demand meets supply, and each dealer wins the amount they

asked for at that price (uniform price auction). In the extended model, winning dealers pay

the prices they bid (discriminatory price auction).

Solving for an equilibrium in this environment is challenging because point-wise maxi-

mization —a common approach in the literature—does not work when bidders face outcome-

dependent constraints. Instead, we must consider all feasible net-demand functions. By do-

ing so, we derive necessary conditions for symmetric Bayesian Nash Equilibria (hereinafter

referred to as equilibria) for all auction environments we consider. We show that traders who

face capital constraints behave as if they were bidding in an auction without constraints, only

that their willingness to pay is discounted by the shadow cost of the capital constraint. For

the uniform price auction, which is the standard auction format in the market-microstructure

literature, we prove that there is a unique symmetric equilibrium with linear net-demand

functions, and derive its functional form.

We show that when capital constraints are eased, not only does the asset price increase,

but so does the price impact across all traders—an effect that does not arise in models

with perfect competition. It occurs because traders discount their willingness to pay (which

declines with quantity due to risk aversion) by the shadow cost of the constraint. Relaxing

the constraint lowers the shadow cost, which not only increases the overall willingness to

pay but also steepens the curve. To understand how this affects price impact, consider the

decision of a single trader, assuming all other traders naively submit discounted willingness

to pay curves. As these curves steepen, the possible market-clearing points—determined

by how much supply is left given aggregate competitor demand at each price—lie along a

steeper (residual supply) curve. This means that it takes a smaller trade amount to change

the clearing price by one dollar: price impact rises and liquidity declines. In equilibrium,

all traders account for their own price impact, which introduces an additional effect from

strategic demand reduction (as in Ausubel et al. (2014)). In uniform price auctions, this

strategic component reinforces the direct effect, whereas in discriminatory price auctions, it
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may partially offset it.

To demonstrate how to quantify the price and price impact effect of capital constraints

with our framework, we use data on Canadian Treasury auctions in Section 3. Our data

combine bidding details from all Canadian government bond auctions between January 2019

and February 2022 with balance sheet information from the eight largest bidders—primary

dealers. We can identify each bidder thanks to unique identifiers, and observe all submitted

bids, in addition to the quarterly Basel III Leverage Ratio (LR) at the holding company

level (following He et al. (2017)). The LR is the ratio between a bank’s capital and assets.

It must be above a regulatory threshold and is considered a relevant capital constraint when

trading government bonds (CGFS (2016)). Lastly, we collect data on all secondary market

trades by dealers to assess the volatility of returns from buying bonds at auction and selling

them in the secondary market.

We estimate the key parameters of the model: dealer risk aversion and the shadow costs

of the capital constraint. To accomplish this, we employ estimation techniques from the

auctions literature (introduced by Guerre et al. (2000); Hortaçsu and McAdams (2010);

Kastl (2011)) to estimate each bidder’s willingness to pay at a discrete number of points.

Then we fit the model-implied functional form for the willingness to pay through these

points. Finally, we take advantage of a temporary exemption of domestic government bonds

from the leverage ratio during the COVID-19 pandemic to identify the degree of dealer risk

aversion and their shadow costs of the capital constraint by analyzing how the willingness

to pay varies around the policy change.

Our findings reveal that dealers exhibit a moderate level of risk aversion, and that the

shadow costs of constraints vary significantly across auctions. In a typical auction the con-

straint is not binding. The distribution of shadow costs, however, demonstrates pronounced

tails, indicating that while constraints are only occasionally binding, their impact when

activated is severe. This observation underscores the importance of examining the entire

distribution of shadow costs, aligning with the notion that violations of these constraints are

rare but high-cost events.

A back-of-the-envelope calculation indicates that a 1% decrease in the shadow cost of

capital constraints might lead to an average increase in both market prices and price impact
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by approximately 0.19%. Therefore, completely removing these constraints could raise the

average price and price impact by 19%, due to rare, costly events. Given that Canadian

Treasury auctions are liquid, independent of capital constraints, the absolute impact of

modifying the constraint on price impact is small. In less liquid markets, even a slight

change in price impact can result in an economically meaningful absolute change. The

effect becomes more pronounced with fewer competing traders and heightened levels of risk

aversion or return volatility.

Given the generality of our framework, it offers a tool for analyzing the impact of Basel-

III style capital constraints on trading, pricing, and market liquidity across various markets

characterized by a finite number of sophisticated traders. Examples include markets for

foreign exchange, repo, mortgage-backed securities, equity securities lending, and government

asset purchase programs. Understanding the influence of capital constraints on prices and

their interaction with market power across diverse market settings is crucial for ongoing

policy discussions, particularly regarding potential adjustments to Basel III requirements

following the events of the COVID-19 pandemic (Group of Thirty (2021); ISDA (2024)).

More broadly, the significance of market power is inherently an empirical inquiry, vital for

policymakers concerned about the unintended consequences of policy interventions, such as

relaxing capital constraints.

Related literature. By analyzing how capital constraints affect asset prices and price

impact or market liquidity, we contribute to several strands of the theoretic and empirical

literature.

A substantial body of the theory literature, surveyed by Vayanos and Wang (2012),

examines the effects of various market frictions—such as imperfect competition and funding

constraints—on market prices and liquidity. Studied in isolation, the typical result is that

individual frictions tend to raise price impact and lower liquidity. We find that funding

constraints can actually decrease price impact and enhance liquidity when traders have

market power. This outcome arises not just from examining the interaction between two

frictions, but also because we investigate a different type of constraint. While the market

microstructure literature focuses on margin or value-at-risk constraints (following Gromb

and Vayanos (2002); Brunnermeier and Pedersen (2009); Pedersen and Gârleanu (2011)), we
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examine capital constraints, motivated by Basel III standards. In this regard we are closer

to a large banking literature (e.g., Begenau (2020); Benetton (2021); Jamilov (2021); Corbae

and D’Erasmo (2021); Begenau and Landvoigt (2022); Wang et al. (2022)) which analyses

how capital constraints affect different aspects of the economy, rather than analyzing its

effect on trading.

Our theory also relates to the ample intermediary asset pricing literature that exam-

ines the impact of capitalization of financial intermediaries, who trade and invest on behalf

of households, on asset price behavior due to constraints on debt (e.g., Brunnermeier and

Pedersen (2009)), or constraints on equity (e.g., He and Krishnamurthy (2013, 2012); Brun-

nermeier and Sannikov (2014)). The key difference relative to these macroeconomic models

is that we zoom in on the market in which large traders, such as intermediaries, interact,

and allow them to impact prices as a result of market power.

The market clears via a multi-unit auction following Wilson (1979), Kyle (1989), and

Klemperer and Meyer (1989), and more recent literature, overviewed by Rostek and Yoon

(2020). Our innovation is the introduction of bidder constraints that are dependent on

the auction outcome. While we focus on capital constraints, our methods to characterize

equilibria generalize to auctions with other types of constraints, including budget constraints,

and quantity or price caps.

Our empirical analysis adds to the growing empirical literature that investigates the

impact of different costs or constraints faced by traders and intermediaries on asset prices

and market liquidity (e.g., Adrian and Shin (2010); Adrian et al. (2014); He et al. (2017,

2022); Du et al. (2018, 2023a,b); Haddad and Muir (2021); Siriwardane et al. (2025)).

There is increasing evidence that Basel III capital requirements are having a negative impact

on bank-intermediated trades (e.g., Boyarchenko et al. (2020); Du et al. (2018); Cenedese

et al. (2021); Wallen (2023)). Our paper highlights a positive effect on liquidity of capital

requirements, which adds to the mixed evidence on how constraints affect liquidity (e.g.,

Adrian et al. (2017); Anderson and Stulz (2017); Trebbi and Xiao (2017); Bessembinder

et al. (2018); Breckenfelder and Ivashina (2021)). Existing studies rely on proxy variables to

capture intermediary costs or constraints, such as spreads or VIX, while we directly estimate

the shadow cost of the capital constraint.
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For estimation, we adopt techniques from the literature on multi-unit auctions, developed

by Guerre et al. (2000), Hortaçsu and McAdams (2010), and Kastl (2011) and extended by

Hortaçsu and Kastl (2012) and Allen et al. (2020, 2024), among others. This literature

commonly assumes that financial institutions are risk-neutral. This stands in contrast to

the related market microstructure literature which builds on Kyle (1989) and assumes that

financial institutions are risk averse. We follow this literature and estimate risk aversion. To

do this, we impose a functional form on preferences to circumvent the impossibility result

by Guerre et al. (2009) that one cannot non-parametrically identify risk aversion (in first-

price auctions)—similar to a handful of papers that estimate risk aversion in auctions for

procurement, timber, and other non-financial goods (e.g., Campo et al. (2011); Bolotnyy

and Vasserman (2023); Häfner (2023); Luo and Takahashi (2023)).3 The auction approach

complements the common macroeconomic practice of calibrating risk aversion for households

using Euler equations. Given the significant role that intermediary risk aversion plays in

intermediary asset pricing models, our estimates offer valuable insights for calibrating these

models.

2 Model

Our goal is to study how prices and price impact change when capital constraints are relaxed

(or tightened) and traders have market power. Consistent with the theoretical literature, we

model market clearing via a uniform price auction, in which winning traders pay the market

clearing price. In Appendix A, we extend the model to discriminatory price auctions, which

is more complicated, but relevant for our empirical analysis.

The market may be one-sided, meaning that traders buy but not sell, or double-sided, so

that traders buy and sell. In practice, primary markets, for instance, are typically one-sided,

while trading on an exchange can be approximated via a double-sided uniform price auction,

where packages of limit orders form net-demand schedules (e.g., Kyle (1989)). In order to

facilitate the comparison with the empirical analysis, we present our framework using a one-

sided market but explain how to adjust it to represent a double-sided market in Appendix

3Gupta and Lamba (2017) highlights the importance of risk aversion in Treasury auctions, but
does not estimate it.
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A. Proofs are in Appendix C. Random variables are highlighted in bold.

2.1 Benchmark

There are N > 2 traders who compete for units of an asset in an auction. When there are

finitely many traders, each one has some market power in that they can impact the market

clearing price. When N → ∞ the market is perfectly competitive.

Total supply AAA is random; it is drawn from some continuous distribution with support

(0, A] where A ∈ R+, and has a strictly positive density, ϕ(·). In our empirical application,

supply is random because traders don’t know the issuance size when they compete. In other

settings, the supply might be random due to noise traders.

Each trader seeks to maximize the payoff they expect to earn from buying in the auction.

Ex-post, when the market clears at price P c and the trader wins amount aci , the payoff is

the gross utility they achieve from the asset, V (aci , ϵi), minus the amount they have to pay,

P caci . Beyond the amount of the asset, gross utility depends on the trader’s private signal, ϵi.

The signal is independently drawn across traders from a distribution with bounded support,

[ϵ, ϵ], and strictly positive density, ψ(·). When ϵ = ϵ = ϵi = 0 with ψ(ϵi) = 1 for all traders

i, all of them observe the same signal, generating an auction environment without private

information.

For most of our analysis we follow Vives (2011), Rostek and Weretka (2012), Chen and

Duffie (2020), Rostek and Yoon (2021), among others, and assume that utility is linear-

quadratic:

V (aci , ϵi) = (µ+ ϵi)a
c
i −

ρσ2

2
[aci ]

2, (1)

with commonly known parameters µ > 0, σ > 0, and ρ > 0. This enables us to derive an

equilibrium with linear demand functions in closed-form, because the trader’s willingness to

pay for amount a, v(a, ϵi) =
∂V (a,ϵi)

∂a
, is linear:

v(a, ϵi) = (µ+ ϵi)− ρσ2a. (2)

Imposing utility (1) is similar to postulating mean-variance preferences (c.f., Wang and

Zender (2002)). Moreover, when assuming that the asset pays an unknown gross return
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of RiRiRi ∼ N(µ + ϵi, σ
2) to trader i, assuming utility function (1) is typically equivalent to

imposing utility with constant absolute risk aversion (CARA) with risk-aversion ρ > 0 (as in

Kyle (1989)).4 To highlight the connection, we refer to σ2 as return variance, and ρ as risk

aversion—short hand for the trader’s overall risk-bearing capacity, which could be shaped

by a variety of factors.

To prepare for the moment at which they receive signal ϵi, each trader determines demand

schedules, pi(·, ϵi) : R+ → R+, for all possible signals they might observe. Each demand

schedule specifies the price, pi(a, ϵi), a trader is willing to pay for amount a, given signal ϵi.

Function pi(·, ·) is strictly decreasing and twice continuous in quantity, and continuous and

bounded in the signal. We denote the set of functions with these properties by B, and the

inverse with respect to quantity by ai(p, ϵi) = p−1
i (p, ϵi).

When determining their demand schedules, each trader faces a capital constraint, accord-

ing to which banks must hold sufficient equity capital relative to their total balance sheet

exposure:

E[θiθiθi − κP cP cP cacia
c
ia
c
i ] ≥ 0. (3)

Here θiθiθi is trader i’s equity capital position. It is drawn iid from some continuous distribution

with strictly positive density on bounded support. P cP cP cacia
c
ia
c
i is the total balance sheet exposure

of the trader, where P cP cP c is the market clearing price, and acia
c
ia
c
i is the amount the trader wins.

Capital threshold κ > 0 is commonly known, for example, 3% according to Basel III.

The constraint must hold in expectation, rather than for any specific signal draw, ϵi.

This captures the feature that it is imposed by a regulator who has less information about

the trader’s beliefs and demand than the trader themselves. Furthermore, the constraint

4The equivalence holds in the standard setting, where an equilibrium can be found via point-
wise maximization, for each fixed price P c. Specifically, maximizing expected CARA utility,
E[1 − exp(−ρωωω(aci , P c))] with respect to aci over future wealth ωωω(aci , P

c) = (RiRiRi − P c)aci that is
generated by holding amount aci at price P c is equivalent to maximizing V (aci , ϵi), given Normally
distributed returns RiRiRi ∼ N(µ + ϵi, σ

2). In our model, the mathematical equivalence breaks down
when constraints bind. The equivalence would continue to hold if, instead of modeling the actual
constraint, we imposed an exogenous cost term, λκacP c, with λκ ≥ 0. We avoid this approach be-
cause an exogenous cost term cannot capture the endogenous nature of the shadow cost, including
its dependence on equity capital and the capital threshold.
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is imposed ex-ante, prior to market clearing, and therefore may be violated ex-post. This

reflects the fact that, in reality, capital requirements must be met on average over a longer

time horizon than one instantaneous moment of market clearing—the trading game is played

many times. The expected equity and balance sheet exposure of a trader reflect their average

positions over this longer time horizon.

When all traders have observed their signals, ϵi, they submit the demand schedule that

corresponds to the observed signal, pi(·, ϵi). The timing assumption—that a trader first se-

lects their demand function for all potential signals before observing their signal—reflects

the reality that traders aim to include the most recent private information in their trad-

ing decisions, while calculating optimal trading strategies is intricate and time-consuming.5

Technically, the timing assumption is similar to a common assumption in Bayesian persua-

sion games (Kamenica and Gentzkow (2011)) where players on one side of the market commit

to a signal realization space and a corresponding profile distribution over that space, prior

to observing their private signal. It makes the model tractable.6 In the special case in which

all traders are equally informed (ϵi = ϵ for all i), the timing assumption is without bite. In

that case, we could equivalently assume that all bidders first observe their shared signal, and

then choose their bidding strategies.

When all traders have submitted their demand, the auction clears at the price, P c, such

that aggregate demand meets total supply: P c :
∑

i ai(P
c, ϵi) = A. Each trader pays the

market clearing price, P c = pi(a
c
i , ϵi), for the amount won, aci = ai(P

c, ϵi) at that price. To

highlight equilibria, we refer to the equilibrium market clearing price by P ∗ and the winning

amount by a∗i .

5In our empirical application, Treasury auctions, traders observe customer orders placed close
to the auction closing time. To incorporate this information, traders predefine bidding strategies
for all contingencies and adjust their bids accordingly when the orders arrive. This approach is also
common in high-frequency trading environments where information arrives from various sources.

6In the absence of a capital constraint, selecting pi(·, ·) to maximize the expected payoff
E[V (acia

c
ia
c
i , ϵiϵiϵi) − P cP cP cacia

c
ia
c
i ] = E[E[V (acia

c
ia
c
i , ϵiϵiϵi) − P cP cP cacia

c
ia
c
i |ϵiϵiϵi]], and then submitting the demand function pi(·, ϵi)

based on the observed signal ϵi, is equivalent to maximizing the expected payoff conditional on
the signal, E[V (acia

c
ia
c
i , ϵi) − P cP cP cacia

c
ia
c
i |ϵi], with respect to pi(·, ϵi). This aligns with the standard timing

assumption in the auction literature in the absence of constraints. However, when accounting for
the constraint, the trader does not condition their bidding strategy on any particular signal draw
to correctly account for the fact that the capital constraint is imposed in expectation over signals,
rather than conditional on any particular signal draw.
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Summarizing, the timing of events is as follows. First, each trader chooses a demand

schedule pi(·, ·) for all possible realizations of signals by maximizing their expected payoff at

market clearing subject to the capital constraint:

max
pi(·,·)∈B

E
[
V (acia

c
ia
c
i , ϵiϵiϵi)−P cP cP cacia

c
ia
c
i

]
subject to

the capital constraint: E
[
θiθiθi − κP cP cP cacia

c
ia
c
i

]
≥ 0,

and market clearing: P cP cP c = pi(a
c
ia
c
ia
c
i , ϵiϵiϵi). (4)

Second, each trader observes their signal and submits the corresponding demand, pi(·, ϵi).
Last, supply and equity positions realize, the market clears, and all transactions take place.

We focus on symmetric equilibria since traders are ex-ante identical. Later, we restrict

attention to equilibria with linear demand functions, which is common in the related liter-

ature (recently reviewed by Rostek and Yoon (2020)). We will establish that, within this

restricted class of symmetric linear equilibria, the equilibrium is unique. We do not make

claims about uniqueness within the broader class of symmetric equilibria or the full set of

possible equilibria.7

Definition 1. A symmetric Bayesian Nash equilibrium is a collection of demand functions

p∗(·, ·) that for each trader maximizes expected surplus subject to the capital constraint and

market clearing. An equilibrium is linear if ∂p∗(a,ϵi)
∂a

is constant at all a.

To derive equilibrium conditions, take the perspective of trader i—who solves optimization

problem (4)—and assume that all other traders follow the equilibrium strategy. Substituting

the market-clearing constraints, P cP cP c = pi(a
c
ia
c
ia
c
i , ϵiϵiϵi), into the maximization problem, we obtain

the following Lagrangian with Lagrange multiplier λ ≥ 0:

max
pi(·,·)∈B

E
[
V (acia

c
ia
c
i , ϵiϵiϵi)− (1 + λκ)pi(a

c
ia
c
ia
c
i , ϵiϵiϵi)a

c
ia
c
ia
c
i

]
.

This optimization problem mirrors the trader’s unconstrained problem, with the key differ-

ence being an additional cost term, λκpi(a
c
ia
c
ia
c
i , ϵiϵiϵi)a

c
ia
c
ia
c
i , which equals λκP cP cP cacia

c
ia
c
i by market clearing.

7In some auction environments without private information stronger uniqueness results are
possible—for instance, uniqueness within the full class of symmetric equilibria (see Glebkin et al.
(2023).
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This term implies that the effective price the trader faces per unit consists of the market

price plus a shadow cost associated with the capital constraint—similar to an ad valorem

tax, (1 + λκ)P cP cP c.

Proposition 1 characterizes how this cost term influences bidding behavior. To emphasize

the generality of the result, we establish it for a broader class of utility functions than the

linear-quadratic form (1).

Proposition 1. Let gross utility V (a, ϵi) be measurable, bounded, continuously differentiable

and strictly concave in a for all ϵi, and bounded in ϵi for all a.

In any symmetric equilibrium, traders behave as if they were bidding in an auction without

capital constraints, in which their willingness to pay is

ṽ(a, ϵi) =
v(a, ϵi)

1 + λκ
(5)

instead of v(a, ϵi), where λ ≥ 0 is the Lagrange multiplier of the capital constraint. Trader i

submits demand function, p∗(·, ·), that for all p, a, and ϵi satisfies

p = ṽ(a, ϵi)− a

(
∂G(a, p|ϵi)

∂a

/∂G(a, p|ϵi)
∂p

)
(−1)︸ ︷︷ ︸

shading

, (6)

where G(a, p|ϵi) = Pr(acia
c
ia
c
i ≤ a|ϵi) with acia

c
ia
c
i = AAA −

∑
j ̸=i a

∗(p, ϵjϵjϵj) is the probability that trader

i, who bids price p = p∗(a, ϵi), wins less than a at market clearance, given that the other

traders play the equilibrium strategy.

The main insight of Proposition 1 is that the trader bids as if participating in a standard

uniform price auction without capital constraints, where the marginal utility, v(a, ϵi), is dis-

counted by the shadow cost of the capital constraint, λκ, which is strictly positive when the

capital constraint is binding, and zero otherwise.8 As in auctions without constraints, strate-

8The shadow cost is common across all traders (within an auction). In our empirical application,
the premise likely holds because traders, acting as dealers, have access to a relatively frictionless
inter-dealer market that allows them to engage in arbitrage. This logic also extends to other
scenarios where traders can mitigate their exposures in a separate market than the one we model,
or at another time. While our model does not explicitly simulate the arbitrage process, it generates
shadow costs consistent with this concept.
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gic traders shade their willingness to pay to reduce payments—unless the market is perfectly

competitive—with the extent of shading depending on the auction rules, as discussed by

Clark et al. (2021).

To explain what determines shading in uniform price auctions, we solve for the equilib-

rium in closed-form. This relies on the assumption that gross utility takes a linear-quadratic

functional form (1).

Proposition 2. Let gross utility V (a, ϵi) be linear-quadratic, i.e., given by expression (1),

and ṽ(a, ϵi) be given by expression (5).

There exists a unique symmetric linear equilibrium in which each trader submits

p(a, ϵi) = ṽ(a, ϵi)− aΛ, with (7)

Λ =
1

N − 2

ρσ2

1 + λκ
, where (8)

λ =

0 if E[θiθiθi] ≥ θ̃

1
κ

(
θ̃

E[θiθiθi] − 1
)
> 0 otherwise,

where θ̃ =
κ

N

(
E[AAA](µ+ E[ϵiϵiϵi])− ρσ2

(
N − 1

N − 2

)
E[A2A2A2]

N

)
.

We know from Proposition (1) that in equilibrium the trader submits a bid p for amount

a that equals their discounted willingness to pay minus a shading factor. In uniform price

auctions the shading factor is determined by the bid’s price impact, Λ—commonly referred

to as Kyle’s lambda, which is constant in linear equilibria. It captures the change in the

market-clearing price when trader i changes their demand marginally. To see why, suppose

the trader bids their full discounted willingness to pay at quantity a. If they shade their bid

slightly, they may win slightly less, but they also decrease the clearing price by Λ. Since the

clearing price applies to all units won, the total cost savings are aΛ.

The inverse of price impact, 1/Λ, is a standard measure of liquidity in exchange markets,

as it represents the order size required to move the market price by one dollar (Kyle (1985);

Vayanos and Wang (2013)). When the market becomes perfectly competitive (N → ∞),

price impact converges to zero and liquidity infinite, i.e., perfect. The key feature in our

setting is that price impact, Λ, and therefore liquidity depends not only on the number

of traders, N , and the curvature of gross utility—captured by ρσ2 in the linear-quadratic
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case—but also on the shadow cost of the capital constraint, λκ.

2.2 How capital constraints affect the price and price impact

The main prediction of the model is about what happens to prices and price impact when the

capital constraint is relaxed, for instance, because the minimal capital threshold decreases.

Corollary 1. When the capital constraint is relaxed, price and price impact increase.

To build an intuition for Corollary 1, assume for a moment that the market is perfectly

competitive (N → ∞). This market is perfectly liquid, and no trader has price impact

(Λ → 0), implying that all traders are price-takers who bid their discounted willingness to

pay. This does not change when relaxing the constraint. Relaxing the constraint, however,

still has an effect on the price. Since the capital constraint depends on the nominal (rather

than real) value of the amount the trader wins at market clearance, the effective per-unit

price each trader faces, (1 + λκ)p, decreases as the shadow cost λκ declines. Consequently,

the trader’s discounted willingness to pay (5) becomes steeper. This leads to an increase in

the market-clearing price—unless offset by a supply response—as illustrated in Figure 1a.9

Now consider an imperfectly competitive market (N < ∞), and take the perspective of

trader i. To decompose the effects at play, assume that all other traders are naive; they

do not internalize that their own bid impacts the price (since Λ > 0), and therefore falsely

submit their full discounted willingness to pay. Naive traders behave like price-takers, and

therefore submit steeper demand curves as the constraint is relaxed. For trader i, this means

that the prices at which the market can clear align along a steeper curve: the residual supply

curve RS−1
i (·), as shown in Figure 1b. This curve reflects the available supply net of the

aggregate demand from all other traders for a given draw of signals and supply. In the

price-quantity space it is defined as:

RSi(p) = A−
∑
j ̸=i

a∗(p, ϵj). (9)

9This prediction is in line with He and Krishnamurthy (2012, 2013) and Brunnermeier and
Sannikov (2014). In their models, a positive shock to a trader’s net worth, i.e., equity capital,
increases its risk-bearing capacity, which leads to higher asset prices. In our model, risk aversion
is constant.
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Figure 1: Change in demand and price impact when capital constraints are relaxed

(a) Demand function

µ+ϵi
1+λκ

A
p

a

µ+ϵi
1+λκ

P ∗

P ∗

(b) Residual supply function
P ∗

aa1 a2

P ∗
2

P ∗
1

P ∗
2
P ∗
1

Figure 1a illustrates how the trader’s demand function, p∗(·, ϵi)—which coincides with their dis-

counted willingness to pay, ṽ(·, ϵi), under perfect competition—shifts when capital constraints are

relaxed. Figure 1b shows how the residual supply curve, RS−1
i (·), for a given realization of supply

and signals, changes with looser capital constraints. The slope of the residual supply curve reflects

the price impact. In both panels, the initial curves are shown in gray, and the curves under relaxed

constraints appear in black.

In the quantity-price space, a steeper residual supply curve, RS−1
i (·), implies that a smaller

adjustment in trader i’s demand—corresponding to movement along a steeper residual supply

curve—is sufficient to shift the market price by one dollar. In other words, price impact,

which is defined as the amount by which the market price moves when the trader demands

marginally more, Λ =
∂RS−1

i (a)

∂a
, increases, while liquidity, 1/Λ, declines.

When all traders internalize price impact there is an additional effect coming from the

bidder’s incentive to shade their bids. In uniform-price auctions, bidders strategically shade

their bids on subsequent units to decrease the clearing price, and save money on the purchase

of earlier units. This increases the total price impact of each trader. To see this formally,

we decompose the total price impact (8) into two parts. First, the price impact that would

arise if traders were naive and therefore submitted their actual discounted willingness to pay

(5). Since its slope is
(

ρσ2

1+λκ

)
the implied price impact is

(
1

N−1

) (
ρσ2

1+λκ

)
. We refer to this as

the direct effect. Second, the effect coming from demand reduction—the strategic effect:

Λ =

(
1

N − 1

)(
ρσ2

1 + λκ

)
︸ ︷︷ ︸

Direct effect

+

(
1

(N − 1)(N − 2)

)(
ρσ2

1 + λκ

)
︸ ︷︷ ︸

Strategic effect

> 0. (10)
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When λκ decreases, both the price and price impact increase by more when traders are

strategic than if they were naive.

Corollary 2. A 1% decrease in the shadow cost of the capital constraint, λκ, leads to an

increase in the price, and the price impact, equal to η =
∣∣ 1
1+λκ

− 1
∣∣%.

Since increasing supply by 1% decreases the market price by N−1
N

Λ%, Corollary 2 implies

that the market price reacts more strongly to a change in supply when capital constraints

are relaxed.

The result that relaxing constraints increases price impact, and thus decreases liquidity, is

surprising in light of the existing literature. The conventional view, summarized by Vayanos

and Wang (2012) and references therein, is that weaker constraints makes traders less risk

averse because they are less afraid of hitting the constraint.10 Less risk averse traders can

respond to price changes more easily, so that the market becomes more liquid.11

Our framework differs in two key dimensions. First, we focus on a different type of con-

straint. Unlike value-at-risk or margin constraints, our constraint captures requirements on

bank leverage, which have become increasingly important for traders since the last financial

crisis (e.g., CGFS (2016); ESRB (2016); Group of Thirty (2021); Boyarchenko et al. (2020);

Duffie (2023)). Second, we keep risk aversion constant to underscore a distinct and opposing

channel through which capital constraints influence asset prices and price impact, separate

from risk aversion. Our identified effect arises solely from changes in the shadow cost of

the constraint, which affects traders’ willingness to pay and thus their strategic behavior.

Notably, this shadow cost effect persists even when we eliminate private information in our

model, indicating it does not stem from private or asymmetric information among traders.

10Sometimes, this relationship is directly built into the model, for instance, by imposing loga-
rithmic utility, which implies that absolute risk aversion decreases in wealth (e.g., Kyle and Xiong
(2001); Xiong (2001)).

11Two exceptions are Glebkin et al. (2023), who find that the result can flip if payoffs are non-
Gaussian as in the case of derivatives, and Fardeau (2024), who extends Gromb and Vayanos (2002)
to illustrate that tighter value-at-risk constraints can improve liquidity when arbitrageurs compete
a la Cournot.
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2.3 Model extensions

We consider five model extensions. First, in our benchmark model, the trader does not hold

any inventory going into the auction. In Appendix A.1, we explain how to extend the model

to account for privately observed inventory positions. These positions affect both the traders

gross utility from winning at auction, and the capital constraint, since it affects the traders

total exposure.

Second, in our benchmark model, asset supply is exogenous and all traders buy from the

auctioneer. It is straightforward to adjust the setting to approximate centralized double-

sided markets, such as an exchange. In this case, demand, pi(·, ϵi) : R → R, represents the
trader’s demand net of supply. In Appendix A.2, we consider two trade environments, one

with symmetric and one with asymmetric market conditions for buyers versus sellers. We

show that our main prediction, that the price and price impact increase when constraints

are relaxed, can generalize to trade settings.

Third, we consider other types of constraints in Appendix A.3. We start by explaining

how to adjust our framework to study the effects of wealth or budget constraints, price

caps, quantity-capacity constraints, and other Basel III regulatory requirements (such as

risk-weighted leverage ratios, and liquidity coverage ratios).12 In fact, any linear constraint

of the form: E[h(P cP cP c, acia
c
ia
c
i ] ≥ 0, where h(P cP cP c, acia

c
ia
c
i) = Γ+Ξaci +ΩP c +ΥP caci with Γ,Ξ,Ω,Υ ∈ R,

gives rise to a linear equilibrium, which can be determined analogously to our equilibrium in

Proposition 2. Furthermore, we illustrate what happens when imposing that the constraint

must hold ex-post for all states of the world (see Proposition 6, Corollaries 3 and 4).

Fourth, in our benchmark model, the auction format is uniform price. Another popular

format for selling or trading multiple units of a good is the discriminatory price auction. In

this format, winning bidders pay the prices they bid, rather than the market clearing price.

We define price impact, Λ, like in a uniform price auction, as the inverse slope of a bidder’s

residual supply curve. At the marginal bid (which is the last winning bid, and equals to

the market price), 1/Λ approximates the amount necessary to change the market price by 1

12Risk-weighted leverage ratios assign different weights to assets based on their riskiness, while
the liquidity cover ratio is a quantity-based funding constraint that depends primarily on banks’
holdings of high-quality liquid assets, such as Treasuries. Both are cornerstones in the Basel III
regulation.
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dollar, similar to the uniform price auction.

In Appendix A.4, we characterize equilibrium conditions for discriminatory price auctions

(Proposition 7), and provide conditions under which we can solve for a linear equilibrium

(Proposition 8), analogously to Proposition 1 and 2. This allows us to show that the main

result of the paper, that the price and price impact increase when capital constraints are

relaxed, generalizes to this auction format when the equilibrium is linear.

There is one difference to the uniform price auction, which is that bid-shading in dis-

criminatory price auctions need not be increasing in quantity. Ausubel et al. (2014) show

that it can be optimal to shade bids for small quantities more strongly compared to bids for

large quantities, depending on the bidder’s beliefs about market clearing, and ultimately the

distribution of winning quantities. Price impact is now:

ΛDPA =

(
1

N − 1

)(
ρσ2

1 + λκ

)
︸ ︷︷ ︸

Direct Effect

+

(
Nξ

(N − 1)(N(1− ξ)− 1)

)(
ρσ2

1 + λκ

)
︸ ︷︷ ︸

Strategic Effect

> 0, (10’)

where ξ ∈ R, ξ ̸= 1 is a shape parameter of the distribution of winning quantities, which,

in any linear equilibrium, follow a Generalized Pareto Distribution. When ξ < 0, the haz-

ard rate of the amount the bidder wins at market clearing is increasing in quantity, which

generates incentives for bid shading to decrease in quantity, and pushes down price impact.

The reverse is true when ξ > 0.

Finally, in our benchmark model, demand is continuous in quantity. Working with con-

tinuous demand functions is common in the related theory literature in order to achieve

tractability, even though in practice demand functions are often discrete (in quantity). For

example, bidders must submit step functions in most Treasury auctions. Therefore, we also

provide equilibrium conditions for step functions in Proposition 3.

Take away. Summarizing, our model helps explain how capital constraints affect asset

prices, price impact, and, with that, liquidity. When constraints are relaxed, both the

market price and price impact increase. For primary markets, this highlights that relaxing

capital constraints increases auction revenues at an implicit cost of larger price impact when

issuing more supply. In the context of exchange markets, higher price impact indicates

reduced market liquidity.
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3 Quantification

Leveraging data on Canadian Treasury auctions, we illustrate how to use our framework to

map changes in capital requirements into changes in price and price impact. Our interest

lies in the relative change in prices and price impact due to altered constraints, illustrating

theoretical mechanisms in action within the data. We expect price effects to be small in

absolute terms, in light of the previous literature that indicates that Treasury auctions are in

most countries highly liquid, and therefore characterized by relatively flat bidding functions

and small average bid shading (e.g., Kang and Puller (2008); Kastl (2011); Hortaçsu et al.

(2018); Allen et al. (2020)).

3.1 Institutional setting and data

Canadian primary market. Governments issue bonds of different maturities in the pri-

mary market via regularly held uniform price or discriminatory price auctions. In Canada,

regular auctions are discriminatory price. Each bidder submits a step function with at most

seven steps, which specifies how much a bidder offers to pay for specific amounts of the asset

for sale. Anyone may participate, but eight dealers purchase the majority of the Treasury

supply.13 These dealers are federally regulated deposit-taking banks who face Basel III re-

quirements. They dominate the Canadian Treasury market, hold a substantial amount of

Government of Canada bonds on their own balance sheets (as shown in Appendix Figure

A1), and intermediate the vast majority of the daily trade volume in government bonds

(Berger-Soucy et al. (2018)). More broadly, these banks dominate the Canadian banking

sector and hold over 90% of the sector’s assets.

According to a survey of market participants, the Basel III leverage ratio represents

the most relevant capital constraint when trading government bonds (CGFS (2016)). This

regulatory requirement came into effect in September 2014 to reduce systematic risk—a

13In total there are eleven primary dealers. One of these dealers is provincially regulated, and
two are private securities dealers. They face different capital regulation than the eight dealers we
study. We do not observe any balance sheet information for these players. Technically, two of the
eight banks have multiple dealers. For example, the Bank of Montreal has two dealers (Bank of
Montreal and BMO Nesbitt Burns) who attend different Treasury auctions and therefore do not
compete or share information within an auction. We treat these as a single dealer.
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benefit which we do not consider in this paper. We focus on the cost side of the constraint,

which was emphasized by Duffie (2018), He et al. (2022), among others. Formally, the LR

measures a bank’s Tier 1 capital relative to its total leverage exposure, and must be at least

3%:
LRiq =

regulatory Tier 1 capital of bank i in quarter q

total leverage exposure of i in q
.

Tier 1 capital consists primarily of common stock and disclosed reserves (or retained earn-

ings), but may also include non-redeemable non-cumulative preferred stock; the leverage

exposure includes the total notional value of all cash and repo transactions of all securities,

including government bonds, regardless of which securities are used as collateral (for more

details, see OSFI (2023)).

In reality, banks refrain from getting close to the Basel III threshold. One reason is that

banks tend to hold a conservation buffer for Tier 1 capital so as to avoid punishment in

the form of restricted distributions (including dividends, share buybacks, and discretionary

payments, such as bonuses). Through the lens of the model, this implies that the relevant

threshold of the capital constraint is unobservable to the econometrician

To separately identify shadow costs of the capital constraint and risk aversion, we rely

on a regulatory change that temporarily eliminated the capital constraint for Treasuries.

When dealers failed to absorb the extraordinary supply of government bonds in March 2020,

government bonds, central bank reserves, and sovereign-issued securities that qualify as high-

quality liquid assets (HQLA) were temporarily exempted from the LR constraint—starting

on April 9, 2020.14 As a result, the LR spiked upward, moving away from the constraint,

as shown in Figure 2b. Other regulatory requirements, such as risk-weighted capital ratios,

or liquidity coverage ratios, remained in place. The exemption of government bonds and

HQLA ended on December 31, 2021, while reserves continued to be excluded.

14The announcement to start and subsequently end the temporary exemption can be found
here: https://www.osfi-bsif.gc.ca/en/guidance/guidance-library/unwinding-certain-

temporary-exclusions-leverage-ratio-exposure-measures, accessed on 05/01/2024. Expo-
sures related to the US Government Payment Protection Program (PPP), which are minor in the
case of Canadian banks, were also temporarily exempted.
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Figure 2: The effect of the exemption on Treasury positions and the LR

(a) Aggregated positions in Treasuries (b) Time series of LR for an average bank

Figure 2a shows the aggregated amount of Canadian government bonds that the biggest six Cana-

dian banks hold in long (in green) and short (in red) positions in millions of C$ from January 2019

until February 2022. The vertical line is April 9, 2020, when the exemption period began. Figure

2b shows the time series of the actual LR (in %) of an average bank in blue. In red is the counter-

factual LR that the average bank would have had in absence of the exemption. In 2022q1, the LR

does not get back to its original level, partially because central bank reserves are still exempted.

Data. We combine multiple data sources. First, we obtain bidding data of all regular

government bond auctions between January 1, 2019, and February 1, 2022, from the Bank

of Canada. We see how much is issued of which security, and the maturity category, of

which there are five (2Y, 3Y, 5Y, 10Y and 30Y). We also observe who bids (identified by a

legal entity identifier) and all winning and losing bids at auction closure. For consistency,

we restrict attention to bids of the eight dealers who are deposit-taking.

Second, we collect balance sheet information for these eight dealers at the holding com-

pany level. We obtain the quarterly LRs of each dealer from 2015q1 until 2022q1 from the

Leverage Requirements Return, in addition to the daily aggregated long and short positions

in government bonds of the six largest dealers from the Collateral and Pledging Report (H4).

Third, we gather information on the volatility of the return, i.e., the price, that a dealer

expects to obtain from selling government bonds in the secondary market. For this we

leverage the fact that dealers start selling bonds that are about to be issued at auction

when the tender call opens, which happens one week before the auction closes. This means

that dealers already observe the distribution of prices at which they can sell a particular
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bond, which gives them a precise idea about the return volatility. To also observe this price

distribution, we obtain prices (and yields) of essentially all trades with Canadian government

bonds from January 1, 2019, until February 1, 2022. These data are collected by the Industry

Regulatory Organization of Canada in the Debt Securities Transaction Reporting System

and are made available for research with a time lag.

Fourth, we collect the Implied Volatility Index for Canadian Treasuries over the same

time period. This index measures the expected volatility of the market over the next 30 days

and is based on option prices on short-term interest rate futures (Chang and Feunou (2014)).

It is similar to the Merrill Lynch Option Volatility Estimate (MOVE) for U.S. Treasuries.

Different to the U.S., the Canadian option market isn’t always liquid, which creates volatility

in the index. Therefore, we don’t rely on this index in our estimation.

An overview of the main variables is presented in Table 1. We express bond prices and

values in yields-to-maturity to make the value of bonds that have different maturities and

coupon payments more comparable. In line with this convention, we compute the auction-

specific return volatilities as standard deviation of yields (expressed in %) at which a dealer

sells a bond that is to be auctioned during the week preceding the auction. To avoid our

estimates being driven by the absolute magnitude of the volatility, we normalize the return

volatility by its average. Figure 3 shows that the resulting return volatility is similar, yet

not identical, to the implied volatility index for Canadian Treasuries (in %).

3.2 Identifying shadow costs of capital and dealer risk aversion

To quantify by how much the price and price impact change when capital constraints are re-

laxed or tightened, we adjust the benchmark model to better fit the data-generating process.

Appendix A.4 provides technical details.

Model adjustments. Consider an auction t that issues a bond of maturity m. In line

with the institutional setting, the auction is discriminatory price, and bidders submit step

functions with K(ϵti) steps for each signal, ϵti. As before, a dealer with private signal ϵti is

willing to pay
vt(atik, ϵti) = (µ+ ϵti)− ρmσ

2
t atik (2)
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Table 1: Summary statistics

Mean Median Std Min Max

Supply (in bn C$) 4.12 4.00 1.23 1.40 7.00

Average bid yield (in %) 1.04 1.09 0.58 0.20 2.18

Years to maturity 8.40 5.03 9.62 2.0 32.62

Number of deposit-taking dealers 8 8 0 8 8

Number of steps in demand curve 4.80 5 1.43 1 7

Maximal amount demanded (in % of supply) 21.32 21.17 10.70 0.08 50.00

Amount dealer won (in % of supply) 6.55 4.98 6.22 0 44.22

Quarterly LR (in %) 4.41 4.36 0.28 - -

Return volatility (normalized) 1 0.74 0.91 0 8.14

Table 1 shows the average, median, standard deviation, minimum, and maximum of key variables

in our sample. Our auction data goes from January 1, 2019, until February 1, 2022, and counts

176 bond auctions. The LR data goes from 2015q1 until 2022q1. The min and max LR are empty

because we cannot disclose this information.

Figure 3: Return volatility

(a) Across maturities (b) Over time

Figure 3a shows the distribution of the normalized return volatility for each maturity category,

excluding outliers. Figure 3b shows a binned scatter plot of the return volatility (in circles) and the

implied volatility index in % (in pluses) across time. The correlation between these two volatility

indices is 0.3. The black lines mark the beginning (09 April 2020) and end (01 January 2022) of

the exemption period.
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for amount atik in auction t for maturity m with return volatility σ2
t when the constraint

does not bind, i.e., λκt = 0.15 Parameter ρm ≥ 0 measures the degree of risk aversion for

a bond with maturity m. Thus, we allow, but do not impose, risk aversion to vary in the

bond’s maturity to reflect the fact that longer bonds may be riskier to hold than shorter

bonds.16 Parameters λκt ≥ 0 represent the shadow costs of the capital constraint. Note

that we estimate the product of the Lagrange multiplier of the constraint and the capital

threshold to avoid having to specify a capital threshold. To highlight this, we relabel the

shadow costs λκt instead of λtκ.

Proposition 3 characterizes how bidders bid in this environment. The main difference to

the conditions of our benchmark model (Proposition 1) is that bidders submit step functions

instead of continuous functions. This changes the distribution of the market clearing price

and the amount each bidder wins, and therefore the shading factor. The economic insights,

however, carry over.

Proposition 3. Consider a discriminatory price auction t with step-function demand , and

denote bidder i’s step-function by {ptk(ϵti), atik}Kt(ϵit)
k=1 , where we abbreviate atik = atk(ϵti).

Denote the discounted willingness to pay by

ṽt(atik, ϵti) =
vt(atik, ϵti)

1 + λκt
. (5)

The equilibrium demand function satisfies for all ϵi

ptk(ϵti) = ṽt(atik, ϵti)−
Pr(ptk+1(ϵti) ≥ P ∗

tP
∗
tP
∗
t |ϵti)

Pr(ptk(ϵti) > P ∗
tP
∗
tP
∗
t > ptk+1(ϵti)|ϵti)

(11)

15The functional form of the intercept µ + ϵti is not relevant, as long as the private signal, ϵti,
only affects the intercept, and not the slope. Moreover, we could rely on our extended model,
where bidders have private information about their inventory position. This would give rise to
the same conditions and estimates. In both model specifications bidders are ex-ante identical. We
think that this is a valid assumption because the eight deposit-taking dealers we focus on in the
paper play similar roles in the secondary market, and face the same regulation. In Allen et al.
(2020), we provide evidence to support this idea. Specifically, in that paper we estimate a more
general auction model in which each dealer may have a latent business type that affects their true
willingness to pay. Our findings suggest that the eight largest dealers share the same business type,
and therefore the same preferences.

16An alternative would be to impose that risk aversion is constant across maturities—this is
rejected by the data, as shown in Figure 5.
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at every step but the last one; at the last step, the trader bids truthfully. The Lagrange

multiplier, and the implied shadow cost, λκt, are pinned down by the capital constraint.

Identification. Before explaining how we estimate the shadow costs of the capital con-

straint, λκt, and the dealer’s degree of risk aversion, ρm, we discuss what variation in the

data helps to identify which parameter under what assumptions.

For this, recall the main insight from Proposition 1, which generalizes to the empirical

environment (Proposition 3): In auction t, dealer i bids for step k like in an auction without

constraints in which their willingness to pay is discounted by the shadow cost, as given in

expression (5). When the unconstrained willingness to pay for maturity m follows expression

(2), this implies that the slope in the dealer’s discounted willingness to pay curve only

depends on their degree of risk aversion, ρm, shadow costs, λκt, and bond return-volatility,

σ2
t : ∂ṽt(atik, ϵti)

∂a
= −βtσ2

t with βt =
ρm

1 + λκt
. (12)

Thus, if we observed the discounted willingness to pay curves, ṽt(·, ϵti), and bond return-

volatility, we would be able to identify the shadow cost, λκt, and risk-aversion, ρm, by com-

paring the bidders’ willingness to pay during the exemption period of the capital constraint—

where λκt = 0—to periods when the constraint is in effect. Specifically, risk aversion, ρm,

is identified from the average slope of the willingness to pay, ṽt(·, ϵti), when the constraint

is exempt (λκt = 0) because the slope of the unconstrained willingness to pay, ρmσ
2
t , is as-

sumed to vary across auctions solely due to observable changes in observed return volatility,

σ2
t . Shadow costs, λκt ≥ 0, are identified from the slopes under the capital constraint.

So far, we have assumed that we observe how much bidders are willing to pay. However,

Proposition 3 makes clear that this is not the case in equilibrium. As in standard auctions

without constraints, dealers shade their bids, with the degree of shading determined by the

auction rules and the bidder’s belief about the market-clearing price. This feature is not

specific to our setting, which allows us to follow the existing literature in separating bid

shading from the underlying willingness to pay.

Building on Hortaçsu and McAdams (2010) and Kastl (2012), we identify the shading

factor from variation in the submitted bids for given auction rules that determine the way the
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market clears. The main idea is to take the perspective of one bidder, fix their submitted

bidding step-function, and simulate market clearing many times to back out the bidder’s

belief about the market clearing price, i.e., the Pr(...|ϵti) terms in condition (11).17 With the

shading factors, we identify the unique values, ṽt(atik, ϵti), that rationalizes the observed bid

in each auction t of each dealer i and submitted step k from the equilibrium conditions (11),

under the assumption that bidders play the equilibrium strategy (Kastl (2011)).

Estimation. We estimate bidder values, ṽtik = ṽt(atik, ϵti), following the resampling ap-

proach in Allen et al. (2024), which takes institutional details of Canadian Treasury auctions,

that are omitted in our theoretic model, into account. For example, it adjusts for the fact

that there are not only dealers, but also customers who bid via dealers. Importantly, these

details only affect the way we estimate the dealers’ beliefs about where the market will clear,

but not the equilibrium condition itself for a given price distribution.

Using value functions with at least two steps, which represent 99% of all functions, we

then estimate parameters {ρm, λκt} for all m, t, by fitting

ṽtik = ζti −
∑
t

βtI(auction = t)σ2
t atik + ϵtik, with βt =

ρm
1 + λκt

(13)

such that λκt = 0 for all auctions t when Treasuries are exempt or otherwise λκt ≥ 0, and

ρm ≥ 0. Here ζti is a dealer-auction fixed effect, σ2
t is the return volatility plotted in Figure

(3), and ϵtik represents finite sample measurement error in the values, ṽtik.

We estimate two separate sets of parameters, one for when the exemption period started

in 2020, and one when it ended in 2021. Given that capital requirements must be fulfilled

quarterly, we use data from auctions that took place within one quarter around each policy

change, i.e., 2020q1–2020q2 and 2021q4–2022q1.

We express bid and values in percentages of yields, and quantities in percentages of

auction supply to avoid that changes in the supply, which increased substantially during the

17To simulate market clearing, bids from other competitors in the auction are randomly drawn
with replacement to construct a residual supply curve. This curve is then intersected with the fixed
bidder’s step-function to determine a potential market-clearing price. By repeating this simulation
many times, one obtains an unbiased estimate of the bidder’s belief about the market-clearing price,
under the assumption that bond values are independent across bidders within the auction.
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COVID-19 pandemic, affect our estimates. Therefore, βt measures by how many percentage

points the dealer’s willingness to pay decreases on average when demand increases by 1% of

auctions supply in an auction with average return volatility (σ2
t = 1).

Estimation findings. Before identifying our parameters of interest, we analyze the slope

coefficients, βt, from regression (13), when estimated without constraints on shadow costs or

risk aversion, and using data from all auctions in our sample. We do this using estimated

values and observed bids to visualize the key variation in the data that pins down our

parameters of interest.

Our theory predicts that if constraints bind then the willingness to pay, expressed in

equation (5), becomes steeper when Treasuries are exempt. In that case, slope coefficients,

βt, should be larger during the exemption period than during regular times. In contrast,

a model without capital constraints, where the degree of risk aversion increases when the

constraint is more binding, would predict that slope coefficients, βt, are smaller during

the exemption period than in regular times. In line with our model, Figure 4 shows that

βt is larger during the exemption period than in regular times for both events—the start

of the exemption period, and the end, where we are less concerned about COVID-related

confounding factors. A t-test we conduct in Appendix B.1 confirms that the difference in

slopes during versus outside of the exemption period is statistically significant at the 5%

level.

Next, we separate the degree of risk aversion from the shadow costs by estimating re-

gression (13) with constraints using data of auctions around the policy changes. We find

that risk aversion is relatively low for all bond types with no clear pattern with respect to

maturity (see Figure 5). The median (mean) degree of risk aversion is 0.005 (0.004). This

implies that a typical dealer is willing to pay 0.5 bps less for 1% more of the auction supply

in an auction with average return volatility. If dealers were risk neutral, their willingness to

pay would be perfectly flat.

In comparison, the existing auction literature estimates risk aversion of similar, yet typi-

cally larger, magnitudes in non-financial settings, and given CARA preferences. Most papers

consider single-unit auctions. For instance, Bolotnyy and Vasserman (2023) estimate a me-

dian degree of risk aversion of firms in procurement auctions to be 0.08. One exception is
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Figure 4: Slope coefficients of estimated value and observed bids

The white box plots of Figure 4 show the distribution of the estimated slopes coefficient of the

average dealer’s willingness to pay in auction t of regression (13) without imposing restrictions on

ρ or λκt for three time periods: before the exemption of Treasuries from the LR (2019q1–2020q1),

during the exemption period (2020q1–2021q4), and after the exemption (2022q1). The gray box

plots show the analogue when using bids instead of estimated values. Dealer values and bids are in

%; quantities are in % of auction supply.

Häfner (2023), who analyzes discriminatory price auctions for Swiss tariff-rate quotas. He

finds that the majority of bidders exhibit a risk aversion parameter of 0.007.

Shadow costs, as shown in Figure 6a, vary substantially across auctions; they are positive

in auctions (outside of the exemption period) in which the average willingness to pay curve is

relatively flat, but the auction-specific return volatility is high. Intuitively, whether capital

constraints bind depends on the dealer bank’s entire balance sheet, which likely vary over

time due to a wide range of factors, including conditions in multiple financial markets and

the banks’ broader business activities. In line with this idea, we find that the auctions with

binding constraints occurred on different dates—spanning beyond the peak of the COVID

crisis in March 2020—and across the maturity spectrum. The long tail in the distribution

of shadow costs suggests that there are some auctions in which dealers expect to take large

losses. Due to these outliers, the average shadow cost is large (53%), with the exact number

depending on the specification we consider.

However, in a typical auction the constraint is not binding—the median shadow cost

is zero across all regression specifications we consider. This finding aligns with extensive

empirical evidence indicating that banks typically avoid operating too close to regulatory
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Figure 5: Risk aversion bond type

Figure 5 shows the risk aversion estimates, ρm, for m = {2Y, 3Y, 5Y, 10Y } around both policy

changes in 2020q1–202q2 (in circles) and in 2021q4–2022q1 (in stars). We exclude 30Y bonds

because they were not issued in all four quarters we consider. The graph also plots the 95%

confidence intervals for 2021q4–2022q1, but given that these intervals are very tight, they are not

visible. To compute standard errors and these intervals, we fit equation (13) for each bootstrapped

estimate of values. Each coefficient is measured in % of yield relative to % of supply.

constraints (e.g., Barth et al. (2005); Berger et al. (2008); Brewer et al. (2008); Corbae and

D’Erasmo (2021)).18 It supports the view that banks face substantial costs when constraints

bind. It also echoes evidence from Duffie et al. (2023), who provide evidence in line with

occasionally binding constraints on dealers’ intermediation capacity in the U.S. Treasury

market. More broadly, our estimates contribute to a literature that quantifies costs associated

with constraints in financial markets, using diverse data and methodologies.19

We conduct a series of robustness checks in Appendix B.2. We explain what happens

18In particular, Corbae and D’Erasmo (2021) document U.S. banks holding Tier 1 capital that
is two or three times above the regulatory minimum. In their model, the capital constraint is only
occasionally binding since banks hold precautionary savings to protect their sizable franchise values
and hitting the constraint is costly.

19For instance, Du et al. (2018) use the overnight spread between the interest rates on excess
reserves paid by the Federal Reserve and the Fed Funds rate as proxy for the average shadow costs
of bank’s balance sheets, which is a couple of basis points. Adrian et al. (2014) fit an augmented
Fama-French factor model using quarterly balance sheet data from U.S. security broker-dealers
from 1968q1 to 2009q4 and U.S. stock returns. They compute a price of leverage (which proxies
for the funding constraint of Brunnermeier and Pedersen (2009), among others) of roughly 10% per
year.
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Figure 6: Shadow costs and their effect on price and price impact

(a) Estimates and confidence intervals (b) Price and price impact elasticity

Figure 6a shows the distribution of the lower and upper bounds of the 95% confidence intervals

for shadow costs (CI-LB and CI-UB, respectively), in addition to the distribution of the point

estimates (Estimates) for all auctions in quarters around the policy changes, excluding outliers.

The confidence intervals of the shadow costs are bootstrapped, analogous to those of the degree of

risk aversion. Figure 6b displays the distribution of elasticity ηt = | 1
1+λκt

− 1| of Corollary 2 using

the shadow cost point-estimates for auctions in the first quarters of 2020 and 2022.

when we rely on different volatility indices, when expressing quantities in absolute terms

rather than in percentages of supply, and when including different samples of bidding func-

tions in the estimation. Our main finding, that risk aversion is moderate (around 0.005),

and that constraints are typically not binding, but when they do, it is costly, is robust across

all specifications.

Discussion. To separate shadow costs from risk aversion, we rely on several assumptions

that enable identification. We outline each assumption, discuss its motivation, and consider

the implications of possible violations.

We assume that dealers behave according to the equilibrium strategy of our empirical

auction model. This assumption is standard in the empirical auction literature and enables

us to recover willingness to pay from observed bids. It aligns with the institutional context,

where dealers are both sophisticated and experienced in Treasury auctions. As a robustness

check, we also estimate the model under the alternative assumption that dealers bid their

true willingness to pay plus a random error. This specification yields lower estimates of
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Figure 7: Shading

(a) Per step (b) Average per period

Figure 7a shows box plots of how much dealers shade their bids at each step. It is the difference

between the submitted bid and the estimated value, both in percentage. The distribution for each

step is taken over dealers and auctions. Shading factors are small in absolute terms, and comparable

to those in the literature. Figure 7b shows the distribution of shading across auctions, dealers, and

steps in 2020q1 (pre-exemption), 2020q2 and 2021q4 (exemption), and 2022q1 (post-exemption).

risk aversion (median of 0.002), since bid shading decreases in quantity (Figure 7a); yet the

average and median shadow costs (43% and zero, respectively) remain similar to the baseline.

Moreover, we assume that the unconstrained willingness to pay follows the linear func-

tional form in expression (2), which arises, for example, under CARA preferences. While

this assumption is common in the theoretical auction literature (as it ensures tractability),

it is less frequently adopted in the empirical auction literature, which typically aims for non-

parametric identification. We cannot directly test our parametric assumption, but we can

provide evidence suggesting that it is a reasonable first-order approximation: Appendix Ta-

ble A1 shows that submitted bids are approximately linear. Therefore, it would be surprising

if the underlying willingness to pay was highly nonlinear.20

The slope of our willingness to pay curve during the exemption period of the capital

constraint is ρmσ
2
t , where σ

2
t captures auction-specific return volatility. This would not be the

20Ausubel et al. (2014) show that a linear equilibrium arises in discriminatory price auctions
without private information (where bidders submit continuous bidding functions) if and only if
willingness to pay is linear and supply follows a Generalized Pareto distribution.
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case if banks faced balance sheet constraints about the nominal value of assets beyond those

stemming from (LR) capital constraints. If this was the case, what we would be identifying is

the variation in total nominal balance sheet costs as regulatory conditions shift. The median

slope coefficients depicted in Figure 4 of the different time periods indicate that the total

nominal balance sheet costs (which show up in the slope’s denominator) were lower during

the exemption period. In light of recent research on the LR constraint, e.g., Boyarchenko

et al. (2020), we expect most of the effect stems from changes in the shadow cost of that

constraint.21

The slope may also vary across auctions in a manner not fully captured by changes in

the auction-specific return volatility, σ2
t , or due to differences across dealers. To investigate

heterogeneity, we flexibly estimate the slope coefficient in each bidder’s willingness to pay

curve per auction, βti, by leveraging variation in value estimates across steps within a step

function for each bidder and auction.22 This identifies the bidder’s effective risk aversion after

controlling for return volatility, and provides precise estimates in auctions in which bidders

submit sufficiently many steps, for instance, in Turkish Treasury auctions (c.f., Hortaçsu and

McAdams (2010)). In our setting, where bidding functions have only four steps on average,

these estimates are less precise, though the observed pattern aligns with Figure 4. The

defining feature is that the βti, like the βt estimates, are typically higher during the exemption

period than outside of it. To account for the median differences in βti estimates between

these periods, either risk aversion (or factors driving it beyond market volatility) must have

increased by approximately 200% during the exemption period, or the LR constraint was

binding in some auctions outside of the exemption period.

Finally, we assume that we observe the return volatility, σ2
t , that a dealer expects to

earn from buying bonds at auction and selling them in the secondary market. In practice,

21The LR constraint was the primary limitation, because dealers were buying more Treasuries
during the exemption period. Given that Treasuries are safe assets with zero risk-weight, this
implies that risk-weighted capital ratios and liquidity coverage ratios improved (see Appendix
Figure A6). Therefore, neither risk-weighted capital constraints nor liquidity coverage ratios were
binding. Moreover, value-at-risk limits were not binding during that period, as is shown, for example
in Figure 8 of Lu and Wallen (2024).

22We estimate regression (13), but replace βt with βti and include an indicator variable for each
dealer i, I(dealer = i), which multiplies the auction-indicator, I(auction = t).
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dealers form such knowledge by actively trading the bond in anticipation of the auction.

With finite data, the observed volatility measure may contain measurement error, which

could bias our slope estimates downward. If return volatility were unobserved, we would

need to impose additional structure on the data—for example, by specifying a model for the

secondary market price process.

3.3 Approximating the price and price impact effect

Ideally, we would use our empirical model to quantify the impact of counterfactual capital

requirements on prices and price impact. Recent advances by Richert (2023) proposes one

way to do this for multi-unit auctions in which bidders do not face constraints. Given the

complexity of our problem, the fact that our estimates of bid-shading are small, and bids are

approximately linear, we take a more modest approach. Specifically, we rely on our theoretic

framework outlined in Section 2 to approximate the magnitude of all effects, setting the

number of bidders to eight.

As a starting point, we rely on Corollary 2, which holds for uniform-price and discrim-

inatory price auctions, and tells us that the market price increases and the price impact

in auction t increases by ηt = | 1
1+λκt

− 1|% when the shadow cost of the capital constraint

decreases by 1%.23 Like shadow costs, this elasticity varies across auctions with a median of

zero and a mean of 0.19%. This implies that eliminating the constraint—implying a 100%

reduction in the shadow cost of the capital constraint—doesn’t change the price or price

impact in a typical auction, but results in a significant increase of 19% on average due to

rare occasions when it is extremely costly to satisfy the constraint.

Next, in Figure 8, we decompose the price impact in Canadian auctions into the direct

and strategic effect that comes from demand reduction. For this, we rely on expression (10’),

which depends on the distribution of the amount bidders win at market clearing, estimated

separately.24 In line with the existing literature, we estimate a small median price impact of

23This statement hinges on the assumption that volatility is independent of λκ. In practice,
this might not always be the case (e.g., Du et al. (2023a)). Our calculation, therefore, neglects
the possible indirect effect that a change in λκ has on the price and the markup via a change in
volatility.

24We first simulate market clearing 1,000 times for each bidder, following the same procedure
that we adopt to estimate values. This gives us 1,000 realizations of winning quantities for each
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Figure 8: Price impact and decomposition

(a) Discriminatory price auction (b) Uniform price auction

Figure 8 displays the distribution of the total price impact, the direct and strategic effect for

both auction formats according to expressions (10) and (10’), using risk aversion and shadow cost

estimates for auctions in the first quarter in 2020 and the first quarter in 2022. Units are bps.

0.01 bps. This means that the auction price would drop by less than 0.01 bps if the Canadian

government issued 1% more of the bond (assuming a face value of C$100).

If Canada sold their debt using a uniform price auction (like the U.S.), the price impact

would be slightly larger with a median of 0.06 bps. The reason for the difference is that

bid shading is decreasing in quantity in Canadian Treasury auctions under the status quo,

as shown in Figure 7a, while it is increasing in quantity under uniform price auctions. This

implies that the strategic effect goes in the opposite direction than the direct effect, reducing

the total price impact with discriminatory price auctions.

Given that the absolute value of the price impact is small under both auction formats,

eliminating capital constraints results in small absolute price impact changes (see Figure 9).

Even the largest change in price impact is relatively small—0.15 bps in the discriminatory

price auction and 0.39 bps in the uniform price auction. This finding is in line with the

insignificant change in bid shading we observe when the policy changed—see Figure 7b.

Taken together, these calculations suggest that the Canadian regulator did not face a

bidder. Then, we compute the mean and variance of those realizations for each bidder. Finally, we
match these “observed” moments to the mean and the bidder-specific variances of the Generalized
Pareto Distribution, which is specified in Proposition 8, using GMM.
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Figure 9: Change in price impact when eliminating the capital constraint

Figure 9 shows the distribution of the change in total price impact when setting all shadow costs

to zero, using risk aversion and shadow cost estimates for auctions in the first quarter in 2020 and

the first quarter in 2022. For the uniform price auction we compute these effects using expression

(10), and for the discriminatory price auction using expression (10’).

quantitatively meaningful trade-off in 2020 and 2022 when deciding whether to relax and

tighten capital constraints—in addition to the way the LR affects trading in the secondary

market and concerns about systematic risk. However, this might not always be the case.

The fewer bidders competing in the auctions (as illustrated in Appendix Figure A2), the

higher return volatility and risk aversion, the larger the change in price impact in absolute

value.25

4 Future research

There is room for future research branching into multiple directions. Our theoretic analysis

relies on the assumption that traders are ex-ante identical. In some real-world applications

this might not be the case. For example, different traders might have different degrees of risk

aversion, or face different constraints. These heterogeneities create possibly intriguing asym-

25Formally, price impact (10’) decreases in the number of bidders, and increases in the return
volatility and risk aversion when ξ < 0 which is the case for all auctions in our data. This is also
true for price impact (10) in uniform price auctions.
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metries.26 Furthermore, we focus on linear equilibria. In the absence of linearity it becomes

challenging to prove that a demand function that fulfills necessary equilibrium conditions is

a global optimum. This is due to the fact that sufficient conditions for maximization over

functions typically hold only locally, as explained, for example, by Elsgolts (1977) in Chapter

8. Addressing this challenge could open the door to exploring potential non-linear effects on

prices and price impact.

To maintain the linearity of equilibrium, we concentrate on a particular category of

constraints, detailed in Appendix A.3. This category excludes value-at-risk constraints,

which have been extensively explored in related literature following Gromb and Vayanos

(2002). Given that traders often operate under several constraints simultaneously, exploring

how these various constraints interact would provide valuable insights. Likewise, examining

how changes in risk aversion due to variations in equity or wealth influence this dynamic—

both through the direct effect on risk aversion and indirectly through the constraints—would

offer further understanding of these complex interactions.

Finally, it would be valuable to examine how regulatory constraints shape traders’ will-

ingness to participate in the market. Such an analysis would complement empirical findings

and anecdotal evidence, which suggest that traders—traditionally acting as market mak-

ers and who are subject to regulatory constraints—are exiting these markets (e.g., Geddie

(2016); Favara et al. (2022); Allen et al. (2024)).

Beyond motivating future theoretical research, our framework could also be used to em-

pirically quantify how capital constraints affect trading, pricing, and liquidity in markets with

a limited number of sophisticated traders. This requires access to micro-level data, which has

become increasingly available. Since we model market clearing via an auction, the framework

is best suited to centralized markets—both one-sided auctions (e.g., for mortgage-backed se-

curities, credit events, or quantitative easing) and double-sided auctions (e.g., exchanges,

where packages of limit orders form net demand curves). Applying the model across differ-

26For instance, each trader could have an individual expectation over how much capital it holds,
and this is common knowledge. Then, a reduction in the expected equity position of one trader
might cause this trader to demand more. This increases the market price and reduces the amount
that the other traders win. The constraints of the other traders may tighten or weaken, depending
on whether the price or quantity effect dominates. The effect on price impact seems ambiguous.

36



ent market settings can help identify the conditions under which constraints bind and when

traders’ risk aversion intensifies. An especially promising direction would be to explore po-

tential feedback loops between capital constraints and market volatility, as suggested by Du

et al. (2023a), to better understand the dynamics of market behavior.

5 Conclusion

We develop a framework to analyze the interplay between trader market power and capital

constraints. We illustrate how to use our framework to quantify the effect of softer capital

constraints on prices and price impact using data from Canadian Treasury auctions. Our

findings contribute to the discourse on adjusting capital requirements, such as those under

Basel III, in the aftermath of the COVID-19 pandemic.
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ONLINE APPENDIX

Market Power and Capital Constraints

by Milena Wittwer and Jason Allen

Appendix A generalizes our benchmark model in various ways. Appendix B provides addi-

tional information about our empirics, including statistical tests, and robustness analysis.

Proofs are in Appendix C. Appendix tables and figures are at the end.

A Model extensions

We provide a series of model extensions. In Appendix A.1, we introduce inventory positions.

In Appendix A.2, we explain how to adjust our framework to analyze trade settings. In

Appendix A.3, we illustrate how to model and analyze different types of constraints. In

Appendix A.4, we show that the main prediction of our model, which is about how price and

price impact depend on capital constraints, can generalize to a discriminatory price auction.

A.1 Inventory positions

Here we explain how to extend the model to account for privately observed inventory posi-

tions. To reduce the number of parameters, we shut off the trader’s signal about the return

of the asset, ϵi, by setting ϵ = ϵ = 0. It is straightforward to include it.

Each trader i now holds portfolio, zi, in inventory, which was acquired at price pz ∈ R+.27

The inventory is drawn iid across traders from some continuous distribution on bounded

support and strictly positive density. It is private information of the trader, and may include

a variety of security types. In this case, price pz represents the average per-unit price of a

security in inventory; it may be a function of other model primitives: for example, the

distribution of asset supply, or the number of traders.

The inventory position affects the trader’s payoff, as well as the capital constraint. Trader

27If the trader’s inventory position only consists of the asset that is for sale in the upcoming
auction, we could replace pz with the auction clearing price, P cP cP c.
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i’s ex-post gross utility is:

V (aci , zi) = µaci + µzzi −
ρσ2

2
[aci ]

2 − ρσ2
z

2
[zi]

2 − ρισσza
c
izi, (14)

with µ, µz, σ, σz > 0, and ι ∈ [−1, 1]. When µ = µz, σ = σz, ι = 1 the asset in inventory is

identical to the asset at auction. The capital constraint is:

E[θiθiθi − κP cP cP cacia
c
ia
c
i − κpzzizizi] ≥ 0. (15)

Proposition 1 generalizes to this setting. The only difference is that v(a, ϵi) = µ + ϵi is

replaced by v(a, zi) = µ − ρισzzi. That is, trader i submits the same function as in the

benchmark model with µ− ρισzzi replacing µ+ ϵi, and an adjusted Lagrange multiplier, λ.

A.2 Trade setting

In line with the empirical application our benchmark model features a one-sided auction.

Here we illustrate how to adjust the setting to accommodate two-sided markets.

The easiest adjustment is to simply let demand curves in the benchmark model, pi(·, ϵi),
map from R to R and represent net-demand. Since all traders are ex-ante identical in our

benchmark model, all of them either expect to buy from noise traders, or sell to noise traders

in this model adjustment. When traders expect to be net-buyers, all model predictions

generalize. When they expect to be net-sellers, the capital constraint of the benchmark

model needs to be adjusted to reflect the fact that taking short positions doesn’t help fulfill

capital requirements.

Next, we consider two additional environments, one with symmetric market conditions for

buyers and sellers, and one with asymmetric conditions. For other environments, equilibria

and predictions about how capital constraints affect prices and price impact, can be derived

analogously.

Our trade framework is similar to the one presented in Appendix A.1, but with two

groups of traders: N buyers, indexed by B, and N sellers, indexed by S. They seek to

trade units of an asset of zero aggregate supply, A = 0. Each trader draws an iid inventory

position of the asset, zGiz
G
iz
G
i , from a group-specific distribution with E[zBizBizBi ] ≤ 0, E[zSizSizSi ] > 0, and

2



E[zBizBizBi ] +E[zSizSizSi ] > 0. In addition, we could assume that the support of the seller’s distribution

is sufficiently negative to make them want to sell with certainty, and vice versa for buyers.

Ex-post, trader i of group G’s gross utility is given by (14) with µz = µ, σz = σ, ι = 1.

Each trader face the same capital constraint (15), i.e.,

E[θGiθ
G
iθ
G
i − κP cP cP caGia

G
ia
G
i − κpzz

G
iz
G
iz
G
i ] ≥ 0 for G ∈ {B, S}, (16)

with equity capital, θGiθ
G
iθ
G
i , which is drawn iid from a group-specific distribution.

First, let us consider a symmetric environment, in which the capital constraint is binding

in the same way for buyers and sellers in the symmetric equilibrium. For this to be the case,

the distribution of capital positions and inventory positions must be such that: E[θBiθBiθBi +θSiθ
S
iθ
S
i ] =

κpzE[zBizBizBi + zSiz
S
iz
S
i ] > 0.

Proposition 4. Consider a symmetric setting where E[θBiθBiθBi + θSiθ
S
iθ
S
i ] = κpzE[zBizBizBi + zSiz

S
iz
S
i ] > 0.

There is a symmetric equilibrium in which traders submit the following net-demand curve:

p(a, zGi ) =
1

1 + λκ

(
µ− ρσ2zGi − ρσ2

(
2N − 1

2N − 2

)
a

)
and (17)

λ =

0 if E[θBiθBiθBi − κpzz
B
iz
B
iz
B
i ] ≥ θ̃

1
κ

(
θ̃

E[θBiθ
B
iθ
B
i −κpzzBiz

B
iz
B
i ]

− 1
)

otherwise.
(18)

with θ̃ = κ(N−1)
2N(2N−1)

[
2Nµ(E[zSizSizSi ]−E[zBizBizBi ])−ρσ2

(
E[(zSizSizSi )2]−E[(zBizBizBi )2]+(N−1)[E[zSizSizSi ]2−E[zBizBizBi ]2]

)]
.

In this equilibrium, buyer i wins aB∗
i = N−1

N(2N−1)

(∑
i z

B
i +

∑
i z

S
i − 2NzBi

)
and seller i wins

aS∗i = N−1
N(2N−1)

(∑
i z

B
i +

∑
i z

S
i − 2NzSi

)
.

The market clears at P ∗ = 1
1+λκ

(
2Nµ− ρσ2

(∑
i z

B
i +

∑
i z

S
i

))
, and each trader’s price

impact is Λ = ρσ2

1+λκ
1

2N−2
. Therefore, it is still the case that the price and price impact

increases when constraints are relaxed—Corollary 1.

Proposition 5. Consider an asymmetric setting where E[θBiθBiθBi + θSiθ
S
iθ
S
i ] ̸= κpzE[zBizBizBi + zSiz

S
iz
S
i ].

(i) In a group-symmetric equilibrium, in which buyers and sellers submit the same net-

demand schedule, respectively, a trader i of group G chooses:

pG(a, ϵGi ) =
1

βG

(
αG + γGzGi − a

)
for G ∈ {B, S}. (19)
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Parameter βB is the root of the following polynomial:

0 =
(
2(1 + λBκ)2(1 + λSκ)2N(N − 1)

)
+
(
(1 + λBκ)((1 + λBκ)(N − 2)2 + 2(1− 2λBκ+ 3λSκ+ (λBκ− 2λSκ− 1)N)N − 3(1 + λSκ)N2)

)
(ρσ2βB)1

+
(
(−2(1 + λBκ)(N − 2)(N − 1) + (2 + λBκ(4− 3N) + 2λSκ(N − 1)−N)N + (1 + λSκ)N2)

)
(ρσ2βB)2

+
(
(N − 1)(2N − 1)

)
(ρσ2βB)3. (20)

The other parameters can be expressed as functions of βB:

βS =
βB

N

(
(N − 1) +

1 + λBκ

1 + λBκ− βBρσ2

)
, (21)

αG =
βG(N − 1) + β−GN

1 + λGκ+ βG(N − 1)ρσ2 + β−GNρσ2
µ, (22)

γG = − βG(N − 1) + β−GN

1 + λGκ+ βG(N − 1)ρσ2 + β−GNρσ2
ρσ2 < 0 for G ∈ {B,S} and G ̸= G. (23)

(ii) This equilibrium exists if the exogenous model parameters are such that βB > 0, βS > 0,

and the Lagrange multipliers that solve the binding capital constraints at market clearing are

non-negative.

In this equilibrium, the market clears at P ∗ = 1
βB+βS

(∑
G α

G + 1
N

∑
G γ

G
∑

i z
G
i

)
, and a

trader’s price impact is ΛG = (Nβ−G + (N − 1)βG)−1 for G ∈ {B,S} and G ̸= G. While it

is challenging to provide general statements about how constraints affect the price and price

impact, it is straightforward to solve for an equilibrium numerically, and verify the price and

price impact effect.

For example, let N = 3, σ = ρ = κ = µ = pz = E[zSzSzS] = E[(zBizBizBi )2] = E[(zSizSizSi )2] = 1, E[zBizBizBi ] =
0, E[θBiθBiθBi ] ≈ 0.239 and E[θSiθSiθSi ] sufficiently high that λS = 0. Then, there exists an equilibrium

with αB = 0.791, αS = 0.808, βB ≈ 0.870, βS ≈ 0.808, γB ≈ −0.791, γS ≈ −0.808 and

λB ≈ 0.1, where we write ≈ instead of = to highlight the fact that we are rounding numbers.

Appendix Figure A3 shows how the price and price impact of buyers and sellers increase

when the constraint for buyers is relaxed in this example.

A.3 Other constraints

Although our focus lies on a particular type of constraint, motivated by Basel III, our

framework extends to a wider set of constraints.
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Alternative ex-ante constraints. Following the same approach as in the proof of Propo-

sition 1, we can characterize necessary conditions in the presence of the following constraint:

E[h(P cP cP c, acia
c
ia
c
i)] ≥ 0, for any h(·, ·) that is differentiable in both input arguments.28 To solve for

an equilibrium in explicit form and prove equilibrium existence, as in Proposition 2, func-

tion h(·, ·) must take a linear form: h(P, a) = Γ + Ξa + Ωp + ΥPa, with Γ,Ξ,Ω,Υ ∈ R.
This class of constraints includes wealth or budget constraints (Γ > 0,Ξ = Ω = 0,Υ > 0),

quantity constraints that might come from bidding limits (Γ > 0,Ξ ̸= 0,Ω = Υ = 0),

or constraints on the clearing price which might arise from arbitrage in an outside market

(Γ > 0,Ξ = 0,Ω ̸= 0,Υ = 0) .

Imposing a linear functional form on h(·, ·) ensures that there are linear equilibria. In

absence of linearity, it becomes challenging to prove that a demand function that fulfills

necessary equilibrium conditions is a global optimum. The reason for this is that many

sufficient conditions one can derive when maximizing over functions only hold locally (see,

for instance, Elsgolts (1977), Chapter 8). To overcome this challenge, the proof of Proposition

2 relies on the property that the objective functional is for any demand function (not just

the equilibrium candidate) strictly concave. This must not be the case when the equilibrium

candidate is non-linear.

Ex-post capital constraints. In some real-world applications constraints must hold with

certainty, i.e., in all states of the world. Here, we characterize equilibrium conditions and

illustrate how changes in the constraint can affect the price and price impact when the

constraint must hold ex-post. For tractability, we let all traders have the same position,

θi = θ for all i. This allows us to solve for symmetric equilibria.

The trader’s maximization problem—the analogue to problem (4)— reads as follows:

max
pi(·,·)∈B

E
[
V (acia

c
ia
c
i , ϵiϵiϵi)−P cP cP cacia

c
ia
c
i

]
subject to

the capital constraint: θ − κP caci ≥ 0,

and market clearing: P c = pi(a
c
i , ϵiϵiϵi) for all a

c
i . (24)

28It suffices to replace H(p(a, ϵ), pa(a, ϵ), a, ϵ) in expression (37) in the proof of Proposition 1

with
(
∂h(p(a,ϵ),a)

∂p(a,ϵ) pa(a, ϵ) +
∂h(p(a,ϵ),a)

∂a

)
[1−G(a, p(a, ϵ)|ϵ)]ψ(ϵ), where pa(a, ϵ) = ∂p(a,ϵ)

∂a .
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Proposition 6. Let gross utility V (a, ϵi) be any measurable and bounded function that is

continuously differentiable and strictly concave in a for all ϵi, and bounded in ϵi for all a.

In any symmetric equilibrium, trader i submits demand function, p∗(·, ·), that for all p, a,
and ϵi satisfies

p = v(a, ϵi) + λa

[(
∂G(a, p|ϵi)

∂p

)
ψ(ϵi)

]−1

− a

(
∂G(a, p|ϵi)

∂a

/∂G(a, p|ϵi)
∂p

)
(−1)︸ ︷︷ ︸

shading

, (25)

where λ ≥ 0 is the Lagrange multiplier of the capital constraint, and G(a, p|ϵi) = Pr(acia
c
ia
c
i ≤ a|ϵi)

with acia
c
ia
c
i = AAA−

∑
j ̸=i a

∗(p, ϵjϵjϵj) is the probability that trader i, who bids price p = p∗(a, ϵi), wins

less than a at market clearance, given that the other traders play the equilibrium strategy.

With ex-post capital constraints it is no longer true that traders bid as if they were bidding

in an auction without constraints but with a discounted value (as in Proposition 1).

To build an intuition for the equilibrium condition, we consider a simplified auction

environment in which all bidders observe the same signal, and thus do not have private

information. Without loss of generality, we normalize this signal to zero, i.e., ϵ = ϵ = 0.

Corollary 3. Let ϵ = ϵ = 0, so that ϵi = 0 for all traders i, and omit the dependence on ϵi

in all functions. In any symmetric equilibrium, each trader submits a demand function that

satisfies the following condition:

[v(a)− p∗(a)]ϕ(aN) =Λ(a) [ϕ(aN) + λ(a)κ] a for all a ∈
[
0,
A

N

]
, (26)

where Λ(a) = − 1

N − 1

p∗(a)

∂a
, (27)

and v(a) = µ− ρσ2a. The unique solution to this differential equation is:

p∗(a) = eM(a)

(
c1 +

∫ a

1

−e−M(y)(N − 1)(µ− ρσ2x)ϕ(Nx)

y(κλ(y) + ϕ(Ny))
dy

)
, (28)

with M(z) =
∫ z

1
(N−1)ϕ(Nx)

x(κλ(x)+ϕ(Nx))
dx for z = a, y, c1 ∈ R, and λ(a) = λ(A/N) given by the

capital constraint for all A ∈ (0, A]. Note that with c1 = µ− ρσ2
(
N−1
N−2

)
the demand function

simplifies to the known solution in an unconstraint auction for κ = 0.
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Intuitively, condition (26) says that the bidder trades off the expected marginal surplus when

winning at price p with the expected marginal cost. The expected marginal surplus is the

difference between the bidder’s value and the price they pay, weighted by the probability

density that the market clears at price p and the bidder wins a. The expected marginal cost

has two parts. The first part is the increased payments in all states with higher realizations

of supply, which is equal to the price impact times the amount won. This is weighted by the

probability density that the market clears at (p, a). The second part, Λ(a)λ(a)κa, reflects

the marginal cost of the constraint.29

Corollary 4. (i) In the symmetric equilibrium, price impact at amount a is:

Λ(a) =
ϕ(Na)

ϕ(aN) + κλ(a)

v(a)− p∗(a)

a
≥ 0. (29)

(ii) Fix an amount a. When λ(a) increases, price impact at amount a increases as long as
∂p∗(a)
∂λ(a)

< ϕ(Na)
(ϕ(aN)+κλ(a))2

(v(a)− p∗(a)).

Both the shadow cost of the constraint, λ(a), and price impact, as shown in equation (29),

are functions of quantity, since the constraint must hold for all states of the world, i.e., for all

quantities that can be obtained. When λ(a) at a fixed amount a increases, price impact at

that point changes due to two opposing effects. A direct effect pushes price impact upwards,

while an indirect effect , coming from a change in p∗(a) in response to the changing shadow

cost, pushes price downwards. The total change in price impact is positive if the direct effect

dominates the indirect effect. This is the case when ∂p∗(a)
∂λ(a)

< ϕ(Na)
(ϕ(aN)+κλ(a))2

(v(a) − p∗(a))—

summarized in Corollary 4 (ii).

A.4 Discriminatory price auction

Here we adjust our benchmark model to the case of discriminatory price auctions, in which

bidders pay the prices they offered to pay for all units won, rather than the market clearing

29To see why Λ(a)λ(a)κa is the marginal cost of the constraint, note that, at any fixed λ ≥ 0,
the total cost from the constraint is −λ(θ − κpa) at all (a, p) at which the market clears. By
market clearing, pRS

i (a) = p, where pRS
i (·) is the inverse of trader i’s residual supply curve RSi(·).

Taking the derivative of −λ(θ − κpRS
i (a)a) with respect to a, and using the fact that ∂pRS

i (a)
∂a =

(∂RSi(p)
∂p )−1 = Λ(a), we obtain the marginal cost of the constraint.
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price. The differences in the payment does not only affect strategic incentives when bidding,

but also the capital constraint. Since bidders pay the prices they offer, and winning bids

are weakly higher than the auction clearing price, the nominal value of the amount bidders

win at auction is the total amount bidders pay, i.e.,
∫ acia

c
ia
c
i

0
pi(a, ϵi)da. This is higher than the

auction clearing price times the amount won, P cP cP cacia
c
ia
c
i . With this, the capital constraint, which

is analogue to the benchmark constraint in (4), is:

E
[
θiθiθi − κ

∫ acia
c
ia
c
i

0

pi(a, ϵiϵiϵi)da

]
≥ 0. (30)

In practice, this constraint approximates two scenarios. First, traders buy bonds at auction

to keep them on their own balance sheet. In this case, bonds are evaluated according to

their book-value, that is, according to the prices paid in the acquisition. Second, traders

buy bonds to later sell them to clients. These bonds must be kept on the trading book, and

evaluated according to their market-value. The market-value could deviate from the prices

traders paid at auction. The deviation is small if traders charge clients prices that are close

to their own transaction costs. To account for potential markups, we could multiply the

auction payment by a scaler.

We consider two settings: one with continuous demand functions, and one with step

functions.

(i) Continuous demand. In the first setting, traders submit continuous demand func-

tions, as in our benchmark model.

Proposition 7. Let gross utility V (a, ϵi) be any measurable and bounded function that is

continuously differentiable and strictly concave in a for all ϵi, and bounded in ϵi for all a.

In any symmetric equilibrium, traders behave as if they were bidding in an auction without

capital constraints, in which their willingness to pay is ṽ(a, ϵi)—given in expression (5)—

instead of v(a, ϵi), where λ ≥ 0 is the Lagrange multiplier of the capital constraint. Trader i

submits demand function, p∗(·, ·), that for all p, a, and ϵi satisfies

p = ṽ(a, ϵi)− (1−G(a, p|ϵi))/
∂G(a, p|ϵi)

∂p
(−1)︸ ︷︷ ︸

shading

, (6’)
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where G(a, p|ϵi) = Pr(acia
c
ia
c
i ≤ a|ϵi) with acia

c
ia
c
i = AAA −

∑
j ̸=i a

∗(p, ϵjϵjϵj) is the probability that trader

i, who bids price p = p∗(a, ϵi), wins less than a at market clearance, given that the other

traders play the equilibrium strategy.

Proposition 7 is the analogue to Proposition 1; only the shading factor is computed differently

due to differences in the payment rules of the auction formats. To show the similarities

across auction formats, we use the same notation for p∗(·, ϵi), G(a, p|ϵi), and the Lagrange

multiplier, λ, even though all of these are auction-format specific.

Solving for equilibrium demand functions in discriminatory price auctions, and proving

equilibrium existence, is much more challenging than in uniform price auctions, even without

constraints. This might be one of the reasons for which the literature has focussed on uni-

form price auctions. Only recently, Pycia and Woodward (2023) have proved pure-strategy

equilibrium existence and uniqueness in an auction environment with identical bidders with-

out private information. Earlier contributions that make similar informational restrictions,

including Wang and Zender (2002), Holmberg (2009), Ewerhart et al. (2010), and Ausubel

et al. (2014), impose additional distributional assumptions. For example, Ausubel et al.

(2014) show that there exists a linear equilibrium if and only if supply follows a General-

ized Pareto Distribution (GPD). Wittwer (2018) extends their ideas to the case with private

information.

Providing novel equilibrium existence results for discriminatory price auctions without

capital constraints is beyond the scope of our paper, which focusses on capital constraints. To

nevertheless make progress, we follow Wittwer (2018) and impose conditions on equilibrium

allocations, which is not ideal. Characterizing conditions on the underlying exogenous model

primitives—i.e., the distribution of supply and signals—is challenging when traders have

private information. Without private information (when ϵ = ϵ = ϵi = 0 for all traders i) we

can derive a sharper result: Equilibrium (7’) of Proposition 8 exists when supply, AAA, follows

a GPD with CDF (31) and ξ ≤ −1.

Proposition 8. Let gross utility V (a, ϵi) be given by expression (1). Suppose there is a

symmetric linear equilibrium in which each trader submits demand function

p∗(a, ϵi) =
1

1 + λκ

(
µ+ ϵi − ρσ2

(
N − 1

N(1− ξ)− 1

)
[a+Nν(ϵi)]

)
, with (7’)
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λ =

0 if E[θiθiθi] ≥ θ̃

1
κ

(
θ̃

E[θiθiθi] − 1
)
> 0 otherwise,

where

θ̃ =
κ

N

[
E[AAA]

(
µ+

E[ϵiϵiϵi](1− (1− σ2)ξ)

1− ξ

)
+ E[AAA]

(
σ2(ϵ+ ϵN(ξ − 1)−Aρ(ξ − 1))ξ

(1 +N(ξ − 1)(ξ − 1)

)
+ E[A2A2A2]

(
(N − 1)ρσ2

N(1 +N(ξ − 1))

)]
.

This equilibrium exists if the joint distribution of supply and private signals is such that, given

all traders submit the demand function (7’), each trader’s allocation at the market-clearing

price follows a GPD with CDF

Ψi(a) = 1−
(
ν(ϵi) + ξa

ν(ϵi)

)− 1
ξ

, (31)

where ν(ϵi) = −ξN(1−ξ)−1
N(1−ξ)ρ

(ϵi − ϵ)− ξ A
N
, and ξ ≤ −1.

Propositions 7 and 8 are analogues to Propositions 1 and 2. Therefore, Corollaries 1 and 2

generalize to discriminatory price auctions when equilibria are linear. Price impact, defined

as the inverse slope of a bidder’s residual supply curve, which is equivalent to ΛDPA =

1
N−1

∂p∗(a,ϵi)
∂a

, is now given by expression (10’).

(ii) Step function demand. In the second setting, bidders submit step functions. This

is the case in many real-world applications, including Canadian Treasury auctions. It is

therefore useful to characterize equilibrium conditions for this environment. For this, we

adopt Kastl (2012)’s framework—i.e., Assumptions 1-6 and the equilibrium definition of his

paper—with three adjustments. First, we introduce capital constraint, (30). Second, we

follow the timing of events of our benchmark model, which implies that each bidder chooses

a bidding function for all possible signals prior to observing the signal. Third, for simplicity,

we assume that the value function, v(·, ϵi), is strictly decreasing for all ϵi, while Assumption

2 in Kastl (2012) allows it to be weakly decreasing. Different to Kastl (2012), we refer to

the private signal by ϵi, rather than si, and let a price bid at step k be pk(ϵi) instead of bik,

in line with the rest of our paper.

Consider a bidder who observes signal ϵi and let all other bidders play the equilibrium

strategy. Bidder i obtains the following expected payoff when submitting step function

10



{pk(ϵi), ak(ϵi)}K(ϵi)
k=1 conditional on observing ϵi:

EU(ϵi) = EV (ϵi)− EP (ϵi), (32)

with

EV (ϵi) =

K(ϵi)∑
k=1

Pr(pk(ϵi) > P cP cP c > pk+1(ϵi)|ϵi)V (ak(ϵi), ϵi)

+

K(ϵi)∑
k=1

Pr(pk(ϵi) = P cP cP c|ϵi)E[V (acia
c
ia
c
i , ϵi)|pk(ϵi) = P cP cP c, ϵi], and (33)

EP (ϵi) =

K(ϵi)∑
k=1

Pr(pk(ϵi) > P cP cP c|ϵi)pk(ϵi)(ak(ϵi)− ak−1(ϵi))

+

K(ϵi)∑
k=1

Pr(pk(ϵi) = P cP cP c|ϵi)E[pk(ϵi)(acia
c
ia
c
i − aik−1)|pk(ϵi) = P cP cP c, ϵi]. (34)

As before P cP cP c is the market clearing price, and acia
c
ia
c
i is the amount bidder i wins at market

clearing. The bidder faces capital constraint (30). With step functions, it looks as follows:

E
[
θiθiθi − κ

[K(ϵiϵiϵi)∑
k=1

Pr(pk(ϵiϵiϵi) > P cP cP c|ϵiϵiϵi)pk(ϵiϵiϵi)(ak(ϵiϵiϵi)− ak−1(ϵiϵiϵi))

+

K(ϵiϵiϵi)∑
k=1

Pr(pk(ϵiϵiϵi) = P cP cP c|ϵiϵiϵi)E
[
pk(ϵiϵiϵi)(a

c
ia
c
ia
c
i − aik−1)|pk(ϵiϵiϵi) = P cP cP c, ϵiϵiϵi

]]]
≥ 0. (35)

The bidder chooses their bidding function to maximize the expectation of (32) subject to

(35); market clearing is already guaranteed. Simplifying the objective functional, we obtain

the following maximization problem:

max
{pk(·),ak(·)}

K(·)
k=1

E
[
EV (ϵiϵiϵi)− (1 + λ)EP (ϵiϵiϵi)

]
, with λ ≥ 0. (36)

Similar to the benchmark model, choosing {pk(ϵi), ak(ϵi)}K(ϵi)
k=1 to maximize EV (ϵi) − (1 +

λ)EP (ϵi) for all ϵi point-wise is equivalent to choosing {pk(·), ak(·)}K(·)
k=1 to maximize E[EV (ϵiϵiϵi)−

(1+λ)EP (ϵiϵiϵi)] for any fixed λ ≥ 0. Therefore, the only substantial difference to Kastl (2012)’s

framework without capital constraints is that the bidder’s marginal cost from winning a step

is no longer just the price they need to pay, pk(ϵi), but it is the price plus the shadow cost
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of the constraint, which is λκpk(ϵi).

B Additional empirical tests and findings

In Appendix B.1, we explain how we test that the slope coefficients of Figure 4 are higher

during the exemption period than during regular time. In Appendix B.2, we summarize our

robustness analysis.

B.1 Testing for steepness in the willingness to pay

We conduct a t-test to compare the median slope, βt, of regression (13) during versus out-

side the exemption period, by relying on our 100 bootstrapped value estimates, and the

assumption that the error in regression (13) comes entirely from measurement noise in the

value estimates. For each bootstrap draw d, we estimate regression (13) and collect all βd
t

estimates. We compute the median of these slope parameters across auctions during versus

outside the exemption period and take the difference, ∆βd. We repeat this exercise for all

bootstrapped values to obtain 100 ∆βd differences—Appendix Figure A4 shows the distribu-

tion of ∆βd’s across draws. With these differences, we compute the t-statistic as the ratio of

∆βd’s mean and their standard deviation, which is divided by the square root of the number

of bootstrap draws. The t-statistic is 81.65, so that we can conclude that the difference in

slope estimates in Figure 4 is statistically significant.

B.2 Robustness analysis

We conduct a series of robustness checks to validate our risk aversion and shadow cost

estimates.30 We report the median and mean of the risk aversion estimates, in addition to

the median and mean of shadow cost estimates, including the respective mean and median

of standard errors of the estimates for all regression specifications we estimate in Appendix

Table A2. Generally, the magnitude of the risk aversion parameters is affected when changing

the units of σ2
t or atik in regression (13), while the magnitude of the shadow cost estimates

changes depending on the cross-auction distribution of σ2
t during regular times. The higher

30A robustness analysis of the value estimates is provided in Allen et al. (2024).
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the variance of σ2
t across auctions, the more disperse the shadow cost estimates, and the

larger the mean due to a few outlying observations.

We start by analyzing the sensitivity of our parameter estimates to the number of steps

included in the values functions. In our benchmark specification, we include all functions

with at least two steps (which are essentially all functions) to avoid a potential bias coming

from omitting functions. Given that we linearly interpolate between steps using our model,

we might be concerned about doing this when there are few steps. Our results, however, are

qualitatively robust to using value functions with more steps—three to six, where we do not

include robustness for seven steps since not all dealers use the maximum allowable number

of steps in all auctions.

Next, we estimate equation (13) with quantities expressed in million C$. In our bench-

mark specification, we normalize quantities by the auction supply to avoid our estimates

being affected by the fact that the Bank of Canada issued larger amounts of debt during

the exemption period than in regular times. Given that dealers have an obligation to ac-

tively participate in the auctions, the increased supply implies that dealers demanded larger

amounts during the exemption period (see Appendix Figure A5). Further, since dealers are

supposed to bid competitively, and are given a price range when bidding, increasing the total

demand decreases the slope in the dealer’s bidding function and willingness to pay during

the exemption period (relative to the case in which we normalize demand by the supply).

The model rationalizes smaller slopes by smaller risk aversion and shadow cost parameters.

Third, we verify robustness with respect to our measure of volatility. We start by smooth-

ing outliers of the return volatility by winsorizing the distribution of volatilities by 2.5% and

5%, respectively. Decreasing the cross-auction variance of the volatility measure results in

lower average shadow costs. Similarly, there are fewer large shadow cost outliers, leading to

a lower average shadow cost than in our benchmark, when we use the inter-quantile range

of yields at which dealers sell prior to the auction instead of the variance of these yields.

Next, we vary the number of trading days we include to measure volatility. In our

benchmark specification, we construct volatility using trades where we observe dealers selling

the to-be-auctioned security in a five trading day window prior to auction. This is natural

given that most pre-auction trading occurs in the one week between the tender open call and
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the auction close. The more days we include, the larger the volatility. Since this effect is

stronger during the exemption period than during regular times, the average shadow cost is

higher than in our benchmark. When we include fewer days to construct the volatility this

effect goes in the opposite direction, pushing the average shadow cost downward. However,

there is an additional effect. The fewer days we include, the more likely it becomes that the

volatility index is missing for some auctions. To avoid dropping these auctions entirely, we

use the average volatility of same maturity-type auctions within the year—in our benchmark

specification there is no need to do this. This interpolation pushes the average shadow cost

estimates upwards.

In addition, we can estimate our model using different volatility indices. One alternative

is to use the Implied Volatility Index for Canadian Treasuries, which measures the expected

volatility in the Treasury market over the next 30 days (Chang and Feunou (2014)). Given

that this volatility drops more strongly during the exemption period than our volatility

index, shadow cost estimates are higher when relying on the implied volatility.

Another alternative is to construct return volatility using post-auction trades. We refrain

from doing so, because dealers do not know what happens after the auction at the time

they bid. Further, post-auction prices likely depend on the realization of the dealer’s private

information, and with that their willingness to pay, in the auction. This implies that the post-

auction volatility—an independent variable in equation (13)—is a function of the dependent

variable and would lead to a simultaneous equation bias.

C Proofs

We first present the proofs of all propositions, and then of all corollaries.

Proof of Proposition 1. Let V (a, ϵi) be any measurable and bounded function that is

continuously differentiable and strictly concave in a for all ϵi, and bounded in ϵi for all a.

Consider trader i, and fix all other demand schedules at the equilibrium. To determine the

best response, trader i solves maximization problem (4). To simplify this problem, we drop

the i-subscript, let v(a, ϵ) = ∂V (a,ϵ)
∂a

, denote pa(a, ϵ) = ∂p(a,ϵ)
∂a

, and abbreviate all functions,

for instance, p(·, ·) by p when useful. Further, we let a∗(ϵ) be the largest amount the bidder

wins when playing the equilibrium strategy, and recall that ψ(·) is the density function of
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signals on support [ϵ, ϵ]. With this, and auxiliary distribution G(a, p|ϵ), which is defined in

Proposition 1, the trader’s maximization problem becomes:

max
p∈B

I(p) subject to L(p) ≥ 0, with (37)

I(p) =

∫ ϵ

ϵ

∫ A

0

F (p(a, ϵ), pa(a, ϵ), a, ϵ)dadϵ (38)

with F (p(a, ϵ), pa(a, ϵ), a, ϵ) = [v(a, ϵ)− p(a, ϵ)− apa(a, ϵ)][1−G(a, p(a, ϵ)|ϵ)]ψ(ϵ),

L(p) =

∫ ϵ

ϵ

∫ A

0

H(p(a, ϵ), pa(a, ϵ), a, ϵ)dadϵ (39)

with H(p(a, ϵ), pa(a, ϵ), a, ϵ) = [E[θθθ]− κ[p(a, ϵ) + pa(a, ϵ)a][1−G(a, p(a, ϵ)|ϵ)]]ψ(ϵ).

Here we have integrated the inner integral by parts to obtain I(p) and L(p).31

A function p∗ is optimal if the following conditions are satisfied:

∂(F + λH)

∂p
(p∗(a, ϵ), p∗a(a, ϵ), a, ϵ)−

d

da

(
∂(F + λH)

∂pa
(p∗(a, ϵ), p∗a(a, ϵ), a, ϵ)

)
= 0 (40)

for all a ∈ [0, a∗(ϵ)], and all ϵ. In addition, we need:

L(p∗) ≥ 0 and λ ≥ 0, (41)

∂(F + λH)

∂pa
(p∗(0, ϵ), p∗a(0, ϵ), 0, ϵ) =

∂(F + λH)

∂pa
(p∗(a∗(ϵ), ϵ), p∗a(a

∗(ϵ), ϵ), a∗, ϵ) = 0 for all ϵ. (42)

Conditions (42) are the natural boundary conditions. They hold automatically given that
∂(F+λH)

∂pa
(p∗(a, ϵ), p∗a(a, ϵ), a, ϵ) = −(1+λκ)a[1−G(a, p∗(a, ϵ)|ϵ)]ψ(ϵ), and G(0, p∗(0, ϵ)|ϵ) = 0,

and G(a∗(ϵ), p∗(a∗(ϵ), ϵ)|ϵ) = 1 for all ϵ by definition of G.

31To simplify the objective function I(p) =
∫ ϵ
ϵ

∫ A
0 [V (a, ϵ) − p(a, ϵ)a]g(a, p(a, ϵ)|ϵ)daψ(ϵ)dϵ

we integrate the inner integral by parts, as follows:
∫ A
0 [V (a, ϵ) − p(a, ϵ)a]g(a, p(a, ϵ)|ϵ)da =

[v(a, ϵ)− p(a, ϵ)− apa(a, ϵ)]G(a, p(a, ϵ)|ϵ)
∣∣A
0
−
∫ A
0 [v(a, ϵ)− p(a, ϵ)− apa(a, ϵ)]G(a, p(a, ϵ)|ϵ)da. Since

G(A, p(A, ϵ)|ϵ) = 1 and G(0, p(0, ϵ)|ϵ)) = 0 for any function p by definition of G, this simpli-

fies to
∫ A
0 [v(a, ϵ) − p(a, ϵ) − apa(a, ϵ)][1 − G(a, p(a, ϵ)|ϵ)]da. Similarly, for the constraint L(p) we

use
∫ A
0 [E[θθθ]− κp(a, ϵ)] da = [E[θθθ] − κ[p(a, ϵ) + apa(a, ϵ)]]G(a, p(a, ϵ)|ϵ)

∣∣A
0
−
∫ A
0 [E[θθθ] − κ[p(a, ϵ) +

apa(a, ϵ)]]G(a, p(a, ϵ)|ϵ)da =
∫ A
0 [E[θθθ]− κ[p(a, ϵ) + apa(a, ϵ)]][1−G(a, p(a, ϵ)|ϵ)]da.
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Dividing (40) by ψ(ϵ) since ψ(ϵ) > 0 for any ϵ, and simplifying gives:

−(1 + λκ)[1−G(a, p∗(a, ϵ)|ϵ)]− [v(a, ϵ)− (1 + λκ)(p∗a(a, ϵ)a+ p∗(a, ϵ))]
∂G(a, p∗(a, ϵ)|ϵ)

∂p

+
d

da

(
(1 + λκ)a[1−G(a, p∗(a, ϵ)|ϵ)]

)
= 0,

where d
da

(
a[1−G(a, p∗(a, ϵ)|ϵ)]

)
= [1−G(a, p∗(a, ϵ)|ϵ)]−a

[∂G(a,p∗(a,ϵ)|ϵ))
∂a

+ ∂G(a,p(a,ϵ)|ϵ)
∂p

p∗a(a, ϵ)
]
.

This rearranges to condition (6), when setting p = p∗(a, ϵ).

Proof of Proposition 2. Guess that there is a linear equilibrium of the following form:

ai(p, ϵi) = α−βp+γϵi, and let all traders but trader i play this equilibrium. For convenience

we drop the trader i supscript. The residual supply trader i faces is RS(p,ZZZ) = ZZZ − (N −
1)α + (N − 1)βp, where ZZZ = AAA − γ

∑
j ̸=i ϵjϵjϵj. Following Wittwer (2021), we will maximize

over a function b(Z, ϵ) that maps from Z into prices rather than from quantities into prices

directly. This allows us to show that a function that fulfills the necessary conditions of

the maximization problem also fulfills sufficient conditions, and is therefore indeed optimal.

Maximization problem (4), becomes:

max
b(·,·)∈B

E[V (RS(b(ZZZ,ϵϵϵ),ZZZ), ϵϵϵ)− b(ZZZ,ϵϵϵ)RS(b(ZZZ,ϵϵϵ),ZZZ)] (43)

subject to: E[θθθ − κb(ZZZ,ϵϵϵ)RS(b(ZZZ,ϵϵϵ),ZZZ)] ≥ 0.

Abbreviating b(·, ·) by b, this problem is equivalent to

max
b∈B

I(b) subject to L(b) ≥ 0, with (44)

I(b) =

∫ Z

Z

∫ ϵ

ϵ

F (b(ϵ, Z), Z, ϵ)ψ(ϵ)ϕZ(Z)dϵdZ,

where F (b(Z, ϵ), Z, ϵ) = V (RS(b(Z, ϵ), Z), ϵ)− b(Z, ϵ)RS(b(ϵ, Z), Z)

L(b) =

∫ Z

Z

∫ ϵ

ϵ

H(b(Z, ϵ), Z, ϵ)ψ(ϵ)ϕZ(Z)dϵdZ,

where H(b(Z, ϵ), Z, ϵ) = E[θθθ]− κb(Z, ϵ)RS(b(Z, ϵ), Z).

Here, ϕZ(·) is the density function of ZZZ which has support [Z,Z], and ψ(·) is the density

function of ϵϵϵ on support [ϵ, ϵ].
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Function b∗ is optimal if L(b∗) ≥ 0, λL(b∗) = 0, λ ≥ 0, ∂(F+λH)
∂b

evaluated at the optimum

is 0 for all Z, ϵ:

(µ+ ϵ)RS ′ − ρσ2RSRS ′ − (1 + λκ)(RS + bRS ′) = 0, (45)

where we abbreviate RS = RS(b∗, Z) and RS ′ = ∂RS(b∗,Z)
∂b

. Rearranging we obtain:

µ+ ϵ− ρσ2RS(b∗, Z) = (1 + λκ)
[
b∗ +RS(b∗, Z)

(∂RS(b∗, Z)
∂b

)−1]
. (46)

In addition, natural boundary conditions,

∂(F + λH)

∂bZ
(b(Z, ϵ), Z, ϵ) =

∂(F + λH)

∂bZ
(b(Z, ϵ), Z, ϵ) = 0, (47)

where bZ denotes the partial derivative of b(Z, ϵ) with respect to Z, must be satisfied. This

is the case because F + λH is independent of ∂b(Z,ϵ)
∂Z

and ∂b(Z,ϵ)
∂ϵ

.

To show that a function b∗ that fulfills the necessary conditions is indeed optimal, we

rely on the fact that F (b, Z) and K(b, Z) = F (b, Z) + λH(b, Z) are for any Z, ϵ, and λ ≥ 0,

strictly concave as functions of b, since

−ρσ2(RS ′(b, Z))2 − 2(1 + λκ)RS ′(b, Z) < 0 and RS ′′(b, Z) = 0.

Therefore, K(b(Z, ϵ), Z)−K(b∗(Z, ϵ), Z) < ∂K(b(Z,ϵ),Z)
∂b

(b(Z, ϵ)− b∗(Z, ϵ)) ≤ 0 for any b(Z, ϵ)

and any Z, ϵ. Multiplying both sides with ϕZ(Z)ψ(ϵ) and integrating over Z, ϵ, we see

that
∫ ∫

K(b(Z, ϵ), Z)ϕZ(Z)ψ(ϵ)dZdϵ <
∫ ∫

K(b∗(Z, ϵ), Z)ϕZ(Z)ψ(ϵ)dZdϵ, and similarly for

F (b(Z, ϵ), Z). Thus, b∗(·, ·) is indeed optimal.

From here it is straightforward to solve for an equilibrium and show that it is unique

within the class of symmetric linear equilibria. For this we rely on the property that function

b∗(·, Z) implies a unique demand function p∗(·, ϵ) for all ϵ. Then we match coefficients of the

trader’s best reply in (46) with the equilibrium guess and show that these coefficients are

unique.

When everyone plays the equilibrium demand function (7), the market clears at

P ∗ =
1

1 + λκ

(
µ+

1

N

∑
i

ϵi −
(
N − 1

N − 2

)
ρσ2A

N

)
, (48)
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and trader i wins a∗i = A
N

−
(
N−2
N−1

)
1

ρσ2 (Nϵi −
∑

i ϵi) . The binding Lagrange multiplier is

pinned down by the binding constraint: E[θiθiθi − κP ∗P ∗P ∗a∗ia
∗
ia
∗
i ] = 0. This completes the proof that

equilibrium (7) is the unique linear symmetric equilibrium in the general case in which

bidders have private information.

Proof of Proposition 3. Consider bidder i, and assume that all other bidders play the

equilibrium strategy. Fix some λ ≥ 0, and note that for any given λ, choosing {pk(ϵi), ak(ϵi)}K(ϵi)
k=1

to maximize EV (ϵi)−(1+λ)EP (ϵi) for all ϵi point-wise is equivalent to choosing {pk(·), ak(·)}K(·)
k=1

to maximize E[EV (ϵiϵiϵi) − (1 + λ)EP (ϵiϵiϵi)]. Therefore, we can determine the optimal bids for

the event that the bidder observes ϵi point-wise for all ϵi.

For this, we can follow the proof of Proposition 1 in Kastl (2012) one-by-one with one

difference. The marginal expected payment (A.3) in Kastl (2012)’s proof must be multiplied

by (1+ λκ) to account for the shadow cost of the capital constraint. Similarly, the marginal

cost of winning a bid at step k is (1+λκ)pk(ϵi) instead of pk(ϵi). This adjustment also needs to

be made in the two auxiliary lemmas that the proof of the proposition relies on. For example,

with capital constraints, a bidder places a bid such that (1 + λκ)pk(ϵi) ≤ vi(ak(ϵi), ϵi) when

there is a positive probability of a tie at any step.

In the end, we determine the correct λ. This is the λ for which λE
[
θiθiθi−κ

[∑K(ϵiϵiϵi)
k=1 Pr(pk(ϵiϵiϵi)) >

P cP cP c|ϵiϵiϵi)pk(ϵiϵiϵi)(ak(ϵiϵiϵi)−ak−1(ϵiϵiϵi))+
∑K(ϵiϵiϵi)

k=1 Pr(pk = P cP cP c|ϵiϵiϵi)E
[
pk(ϵiϵiϵi)(a

c
ia
c
ia
c
i−ak−1(ϵiϵiϵi))|pk(ϵiϵiϵi) = P cP cP c, ϵiϵiϵi

]]]
=

0, when all bidders submit step function that satisfy the necessary equilibrium condition for

all ϵi.

Proof of Proposition 4. We derive a symmetric equilibrium by simplifying the equilib-

rium of Proposition 5 under the assumption that E[θBiθBiθBi + θSiθ
S
iθ
S
i ] = κpzE[zBizBizBi + zSiz

S
iz
S
i ] > 0.

We start by guessing that there is an equilibrium in which the constraint is binding with

equal strength for both buyers and sellers, i.e., λB = λS = λ ≥ 0. Under this conjecture, we

simplify the demand coefficients provided in Proposition 5 to obtain candidate equilibrium

demand function (17). This candidate is indeed an equilibrium if the Lagrange multipliers

that ensure that the capital constraints hold for both buyers and sellers are non-negative

and common across trader groups, i.e., λB = λS = λ ≥ 0.

To show that this is the case, and derive the functional form for λ, we determine the λ

at which the constraint binds, simultaneously for both groups of traders. The solution is
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given in equation (18). Since E[θBiθBiθBi + θSiθ
S
iθ
S
i ] = κpzE[zBizBizBi + zSiz

S
iz
S
i ] > 0 by assumption, the Lagrange

multiplier is identical for buyers and sellers.

Proof of Propositions 5. We guess that there is a group-symmetric BNE, in which a

trader of group G submits the following net-demand curve:

aG(p, zGi ) = αG − βGp+ γGzGi with βG > 0, for G ∈ {B, S}.

When everyone submits the equilibrium guess, the market clears when total demand equals

total supply:
∑N

i=1 a
B(p, zBi ) = −

∑N
i=1 a

S(p, zSi ). Thus, ex-post, buyers and sellers face

different types of residual supply curves, and price impact:

RSB(p, zBi ) = −
N∑
i=1

aS(p, zSi )−
N∑
j ̸=i

aB(p, zBj ) , RSS(p, zBi ) = −
N∑
j ̸=i

aS(p, zSj )−
N∑
i=1

aB(p, zBi )

∂RSB(p, zBi )

∂p
= NβS + (N − 1)βB =

1

ΛB
,
∂RSS(p, zSi )

∂p
= NβB + (N − 1)βS =

1

ΛS
.

Following the same steps as the proof of Proposition 2, we obtain the following necessary

and sufficient equilibrium conditions for the buyers and sellers best response, respectively:

µ− ρσ2(aB + zBi ) = (1 + λBκ)
[
p+ aB

(
NβS + (N − 1)βB

)−1]
, (49)

µ− ρσ2(aS + zSi ) = (1 + λSκ)
[
p+ aS

(
NβB + (N − 1)βS

)−1]
. (50)

In the group-symmetric equilibrium, all buyers and sellers must choose the equilibrium guess.

Matching the β coefficients from the best replies to the equilibrium, we can express βS as a

function of βB, shown in equation (21), and characterize βB as the root of polynomial (20).

For these coefficients to be valid in equilibrium they must be strictly positive. Similarly, we

back out the αG and γG coefficients as functions of βB and βS from the best responses (49)

and (50).

The equilibrium Lagrange multiplier is pinned down by the binding constraint (16) for

buyers and sellers, whenever it is binding, similar to the benchmark model. However, now,

we can no longer solve for λS, λB ≥ 0 in explicit form, since βB and βS are complicated

functions of λS, λB.
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Proof of Proposition 6. The proof is analogous to the proof of Proposition 1, but the

constraint is different. Using the same notation as before, the bidder’s maximization problem

is:
max
p∈B

I(p) subject to L(p(a, ϵ), a) = θ − κp(a, ϵ)a ≥ 0 (51)

for all a, ϵ, with I(p) given by (38).

A function p∗ is optimal if the following conditions are satisfied:

∂F

∂p
(p∗(a, ϵ), p∗a(a, ϵ), a, ϵ)−

d

da

(
∂F

∂pa
(p∗(a, ϵ), p∗a(a, ϵ), a, ϵ)

)
− λκa = 0, (52)

and L(p∗(a, ϵ), a) ≥ 0, λ ≥ 0 for all a ∈ [0, a∗(ϵ)], and all ϵ. As before, natural boundary

conditions,

∂F

∂pa
(p∗(0, ϵ), p∗a(0, ϵ), 0, ϵ) =

∂F

∂pa
(p∗(a∗(ϵ), ϵ), p∗a(a

∗(ϵ), ϵ), a∗(ϵ), ϵ) = 0, (53)

are satisfied. Inserting the expressions for the partial derivatives of F like in the proof for

Proposition 1, and simplifying gives:

(p∗(a, ϵ)− v(a, ϵ))
∂G(a, p|ϵ)

∂p
ψ(ϵ) = λa+ a

∂G(a, p|ϵ)
∂a

ψ(ϵ), (54)

which rearranges to condition (25).

Proof of Proposition 7. The proof is analogous to the proof of Proposition 1. There is

only one difference, which comes from the fact that bidders pay the prices they bid for all units

that they win instead of the market clearing price. This implies that F (p(a, ϵ), pa(a, ϵ), a, ϵ),

and H(p(a, ϵ), pa(a, ϵ), a, ϵ) in maximization problem (37) are

F (p(a, ϵ), pa(a, ϵ), a, ϵ) = [v(a, ϵ)− p(a, ϵ)][1−G(a, p(a, ϵ)|ϵ)]ψ(ϵ), (55)

and

H(p(a, ϵ), pa(a, ϵ), a, ϵ) = [E[θθθ]− κp(a, ϵ)[1−G(a, p(a, ϵ)|ϵ)]]ψ(ϵ), (56)

respectively. With slight abuse of notation we are using the same notation as in the uniform-

price auction.
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Proof of Proposition 8. When equilibrium quantities, a∗ia
∗
ia
∗
i , follow a Generalized Pareto

distribution, we can solve for a function that fulfills condition (6’) of Proposition 7. For

this, we combine the insight that a trader bids as if their true willingness to pay was v(a,ϵi)
1+λκ

for any given λ ≥ 0, with a known result from the literature on equilibrium existence (e.g.,

Proposition 7 of Ausubel et al. (2014), Theorem 2 of Wittwer (2018))). In equilibrium, λ > 0

is pinned down by the capital constraint if the constraint binds, and is zero otherwise.

Proof of Corollary 1. To show that price impact increases when the constraint is relaxed,

which decreases λ, we take the derivative of price impact (8) with respect to λ. It is negative.

Similarly, the derivative of the clearing price (48) with respect to λ is negative.

Proof of Corollary 2. To prove the corollary, we compute the following elasticity:

ηP =
∂P ∗

∂(λκ)

λκ

P ∗ with Λ defined in (8) and P ∗ defined in (48),

ηΛ =
∂Λ

∂(λκ)

λκ

Λ
with Λ defined in (8).

Simplifying terms, we obtain that ηP = ηΛ = η = 1
1+λκ

− 1.

Proof of Corollary 3. Let ϵ = ϵ = 0, so that ϵi = 0 for all traders i, and omit the

dependence on ϵi in all functions. In this case, we can simplify the condition for a symmetric

equilibrium (in which each trader wins A
N
) of Proposition 6. For this, we replace ψ(ϵi) = 1

and insert:

∂G(a, p|θi)
∂a

= ϕ(Na) (57)

∂G(a, p|θi)
∂p

= (N − 1)ϕ(Na)

(
∂a∗(p)

∂p

)
= (N − 1)ϕ(Na)

(
∂p∗(a)

∂a

)−1

. (58)

We obtain differential equation (26). This differential equation has unique solution (28).

Proof of Corollary 4. Statement (i) follows from condition (26) of Corollary 3. Price

impact is non-negative since any valid equilibrium demand function must be decreasing,

which implies p∗(a) ≤ v(a). To prove statement (ii), we fix some point a, and take the partial

derivative of price impact (29) with respect to λ(a) for a fixed point a. This derivative is

positive if ∂p∗(a)
∂λ(a)

< ϕ(Na)
(ϕ(aN)+κλ(a))2

(v(a)− p∗(a)).
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Appendix Table A1: Bid functions are approximately linear

mean median sd

βt 0.21 0.16 0.13

R2
t 0.72 0.74 0.11

Adj. R2
t 0.64 0.67 0.15

Within R2
t 0.54 0.56 0.15

Appendix Table A1 shows the point estimate and R2 from regressing bids on quantities and an
auction-dealer fixed effect in each auction, btik = ζti + βtatik + ϵtik, using bidding functions with
at least two steps. Bids are in bps of yields and quantities in percentage of supply.
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Appendix Table A2: Estimates for all regression specifications

XXX Median ρ XXX Mean ρ Median λκ Mean λκ

Benchmark 0.0053 (4.438e-05) 0.0048 (5.272e-03) 1.518e-11 (6.193e-03) 0.5292 (1.347e-02)

3 steps 0.0053 (3.379e-05) 0.0049 (4.534e-05) 1.518e-11 (6.835e-03) 0.5571 (1.416e-02)

4 steps 0.0052 (3.378e-05) 0.0048 (4.516e-05) 1.634e-11 (9.320e-03) 0.5098 (1.529e-02)

5 steps 0.0052 (3.340e-05) 0.0047 (3.340e-05) 5.540e-12 (1.539e-02) 0.5494 (2.097e-02)

6 steps 0.0049 (3.494e-05) 0.0049 (4.869e-05) 1.682e-12 (3.403e-11) 0.3389 (1.627e-02)

In mil C$ 0.0001 (8.749e-07) 0.0001 (9.970e-05) 3.638e-12 (1.378e-03) 0.3138 (8.806e-03)

2.5%-winsorized 0.0050 (3.214e-05) 0.0048 (4.307e-05) 3.014e-10 (6.193e-03) 0.4115 (1.191e-02)

5.0%-winsorized 0.0050 (3.153e-05) 0.0048 (4.270e-05) 2.405e-10 (6.194e-03) 0.3530 (1.133e-02)

IQR 0.0043 (3.615e-05) 0.0044 (3.857e-05) 1.968e-09 (7.657e-03) 0.4658 (1.293e-02)

2 days 0.0050 (3.881e-05) 0.0045 (4.003e-05) 2.249e-14 (1.421e-04) 0.6188 (1.127e-02)

3 days 0.0047 (3.847e-05) 0.0048 (4.196e-05) 3.513e-13 (4.719e-04) 0.6285 (1.202e-02)

4 days 0.0048 (3.766e-05) 0.0048 (4.360e-05) 2.217e-11 (4.802e-03) 0.5559 (1.200e-02)

6 days 0.0054 (4.386e-05) 0.0049 (3.414e-05) 1.489e-11 (4.898e-0.3) 0.6159 (1.504e-02)

7 days 0.0054 (3.666e-05) 0.0047 (4.067e-05) 1.153e-10 (1.175e-02) 0.6597 (1.607e-02)

Appendix Table A2 shows the median and mean of the risk aversion estimates and the shadow costs,
respectively for different regression specifications. The mean and median standard errors are in paren-
theses. “Benchmark” reports the estimates of our benchmark specification. In columns “N steps” for
N ∈ {2, 3, 4, 5, 6} we use only values that correspond to bidding step functions with weakly more than N
steps. In column “In mil C$” we use quantities in absolute values, expressed in million C$. In columns
“x%-winsorized” for x ∈ {2.5, 5} we winsorize the distribution of return volatilities, σ2

t , by x% to ex-
clude outliers which lead to large shadow costs, and a higher average of these costs. In column IQR we
use the inter-quantile range of yields at which dealers trade up to five days prior to the auction as our
volatility measure, which also reduces across-auction heterogeneity in volatility. In columns “T days”
for T ∈ {2, 3, 4, 6, 7} we construct our volatility measure using trades on T days prior to the auction.
We exclude T = 5 since this is used in our benchmark specification, and T = 1, because there aren’t
sufficiently many trades for each auction.
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Appendix Figure A1: Holders of Canadian government bonds
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Appendix Figure A1 shows who holds Canadian government bonds and bills from 2007 until 2021

in percentage of par value outstanding: Bank of Canada, Non-residents, Canadian pension funds,

Canadian banks, Canadian insurance companies, and other private firms. The bank category

holdings are mostly driven by the eight banks we focus on, as they hold over 80% of the assets of

all banks.
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Appendix Figure A2: How price impact varies in the number of bidders and shadow costs

(a) Direct price impact
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Appendix Figure A2a hows how the direct price impact, 1
N−1

ρσ2

1+λκ , varies in the shadow cost for 3, 8,

and 20 bidders, presented by the black, the dotted, and dashed line, respectively, using the average

risk aversion estimate, and the average volatility. Figure A2b shows the price impact that arises

due to demand reduction, according to equation (10’), in a typical discriminatory price auction

(DPA). For illustration, we use the median ξ estimate, which is negative, so that the strategic effect

is negative. Figure A2c shows the strategic price impact effect for uniform price auctions (UPA)

using equation (10).
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Appendix Figure A3: Equilibrium example in an asymmetric trade setting

(a) Effect on slopes: βB, βS
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(b) Effect on price: P ∗
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Appendix Figure A3 visualizes the effect of tightening the capital constraint for buyers, i.e., in-

creasing their λ, on the slope coefficients in (a), on the market clearing price in (c), and the price

impact of buyers and sellers in (c) for buyers (the solid line) and for sellers (the dashed line). To

compute the price, we assume
∑

i z
B
i = 2 and

∑
i = zS = −1.
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Appendix Figure A4: Difference of slope estimates during and outside the exemption period

Appendix Figure A4 shows the distribution of the difference in the median slope in all auctions

that took place during the exemption period versus the median slope in all auctions that took

place during regular times, ∆βd, across bootstraps d.

Appendix Figure A5: Variation in quantities

(a) Supply and total demand (b) Total demand in percentage of supply

Appendix Figure A5a shows the distribution of the total amount a dealer demands in an auction before,

during, and after the exemption period (in white) and the distribution of the supply (in gray). Demand

is expressed in million C$, and supply is in 10 million C$ to make the two comparable. Appendix Figure

A5b shows the distribution of the total amount demanded as percentage of supply across periods.
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Appendix Figure A6: Excess capital holdings
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Appendix Figure A6 shows the average excess capital holdings for three different regulatory capital

constraints: (i) Total risk-weighted capital, (ii) Tier 1 capital, and (iii) Common equity Tier 1

(CET1) capital. The main take-away is that excess capital holdings increased during the COVID

crisis, moving banks away from regulatory thresholds (other than the LR constraint).
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