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Abstract
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on the German EV market, I find that a support scheme almost doubled EV sales but

substantially affected EVs’ price and driving range. These adjustments create a trade-off
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1 Introduction

Road transport accounts for 12% of global greenhouse gas emissions, and electric vehicles
(EVs) are considered one of the most promising means to help decarbonize this sector. As a
consequence, governments worldwide subsidize EV purchases, with total spending amounting
to $15 billion in 2018. To aid the development of EVs, policymakers need to consider two
fundamental issues. First, the driving range of EVs is lower than that of traditional gasoline
or diesel cars, making it an important quality dimension. Firms can adjust the range rela-
tively easily, meaning they can respond with price and range changes to subsidies. Second,
the widespread adoption of EVs requires the development of a network of charging stations,
the value of which depends on the number of EVs circulating. These indirect network effects
create a “chicken-and-egg” problem in which neither side of the market will develop without
the other. Consequently, understanding how price and range decisions of firms interact with
indirect network effects and affect market outcomes is crucial for evaluating EV policies.

This paper provides a framework to study subsidy design in the presence of adjustable prod-
uct attributes and indirect network effects. Doing so is challenging and requires a framework
with two innovative features. First, my framework allows for endogenous choices of both EV
price and range. This is a nontrivial contribution as the current literature studying EV subsi-
dies abstracts away from modeling range choices and sometimes does not model the car supply
side at all. Modeling price and range choices is important as firms can alter these attributes in
response to subsidies. Second, my framework incorporates indirect network effects and their
interaction with endogenous price and range choices. Incorporating indirect network effects is
challenging because they can lead to electric cars acting as complements. In that case, firms
have incentives to increase sales to spur additional charging station entry. Firms can do so by
lowering the price of their EV or increasing the range; what strategy they choose is an empirical
question as it depends on preferences and cost structures. My framework allows me to evaluate
subsidy schemes as it links the price and range effects of subsidies to market outcomes. I can
thus inform policy discussions and answer questions such as: How do indirect network effects
affect price and product attribute decisions of firms? How do subsidies affect EV prices and
range, charging station entry, and policy objectives?

To answer my research questions, I build a structural model of car demand, car supply, and
charging station entry. The demand side of the model builds on the canonical model of Berry,
Levinsohn, and Pakes (1995). Consumers choose between differentiated cars of different en-
gine types and exhibit preferences over EV range and the number of public charging stations.
The demand side generates flexible substitution patterns, which are key to evaluating how pur-
chase subsidies affect car choices. I account for the endogenous attributes with instruments
exploiting the competitive environment and variations in charging station subsidies. The car
supply–side builds on the recent literature studying equilibrium outcomes when firms can ad-
just one or more continuous product attributes (Fan, 2013; Crawford, Shcherbakov, and Shum,
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2019) and extends it to model price and attribute choices when indirect network effects are
present. Firms choose the prices of their cars and the range of their EVs. The charging station
entry side links the number of charging stations to the cumulative EV base and the level of
charging station subsidies. Modeling charging station entry allows me to incorporate indirect
network effects into the car demand and supply model and study how charging station subsidies
affect market outcomes. With this model, I can study how indirect network effects interact with
endogenous price and range decisions and how these decisions affect the policy goals of EV
subsidy programs.

Using a novel state-level data set combining new car purchases, prices, and attributes with
public charging station entry in Germany, I have three main findings. First, I find that indirect
network effects substantially affect EV price and range choices–indirect network effects lower
EV markups by around 6% on average. Second, I find that purchase subsidies introduce strong
price and range adjustments. A flat purchase subsidy Germany introduced in 2016 lowered
the price and range of EVs and greatly increased sales. Third, indirect network effects and
subsidy–induced price and range adjustments create a trade-off between maximizing EV sales,
maximizing total and consumer surplus, and minimizing CO2 emissions.

I find substantial indirect network effects on the EV demand and the charging entry side,
making own-price elasticities larger in absolute value. Not accounting for indirect network ef-
fects would lead to overestimating EV markups. Also, indirect network effects lead to negative
cross–price and positive cross–range elasticities, which has important implications for EV pro-
ducers’ price and range choices. Negative cross-price elasticities mean that if a firm lowers the
price of its EVs, the demand for a competing EV may increase because the indirect network
effects dominate the direct price competition effect. EV sales would almost double if produc-
ers internalized the effect of price and range choices on other EVs in the market because firms
would find it optimal to sell cheaper, lower-range EVs on which they earn a lower markup.

I use the model to perform a rich set of counterfactuals. I analyze a German program for
purchase and charging station subsidies whose goal was to increase EV sales substantially. I
find that this program increased EV sales by 75% but caused strong price and range adjust-
ments. The indirect network effects increase these adjustments by only a small amount. Unlike
in the case of uni-dimensional pass-through to price (Bulow and Pfleiderer, 1983; Stern, 1987;
Weyl and Fabinger, 2013), the direction of the price and range effects is ambiguous and, hence,
an empirical question. In this case, firms reduced the price and range and sold cheaper, lower-
range EVs on which they collected a lower markup. I then analyze the effects of each part of
the subsidy program individually. Removing the charging station subsidy would decrease EV
sales by 18% and charging stations by 45%. Unlike the purchase subsidy, the charging sta-
tion subsidy caused only minimal price and range adjustments. Removing purchase subsidies
would decrease EV sales by 30% and charging stations by 4%. However, spending on charging
station subsidies was larger in Germany.

Finally, I analyze subsidy design by finding combinations of flat and range–based purchase
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and charging station subsidies that keep subsidy spending constant at the 2018 level. I find that
policymakers face a trade-off between maximizing EV sales, maximizing consumer surplus,
and minimizing annual CO2 emissions from new cars. This trade-off occurs because firms
respond to a larger flat purchase subsidy by selling cheaper EVs at a lower range and respond
to lower flat subsidies or larger range–based purchase subsidies by selling more expensive EVs
with a higher range. These results highlight that policymakers should carefully consider the
effects of maximizing EV sales, as this can lead to unintended consequences in the form of
price and range changes.

In this paper, I make contributions to several streams of literature. First, I contribute to the
literature on EV policies by analyzing the role of indirect network effects in firms’ price and
range decisions. This literature has studied the effects of purchase subsidies (Beresteanu and Li,
2011; Muehlegger and Rapson, 2022; Xing, Leard, and Li, 2021), the role of charging stations
and indirect network effects (Li, Tong, Xing, and Zhou, 2017; Li, 2023; Springel, 2021; Four-
nel, 2024), and other margins such as entry of new EVs (Armitage and Pinter, 2022), usage
behavior (Davis, 2019; Sinyashin, 2021), and portfolio effects (Johansen and Munk-Nielsen,
2022; Davis, 2022).1 Jia Barwick, Kwon, and Li (2024) study attribute-based subsidies in
China but do not model the interaction with the charging station side. To the best of my knowl-
edge, this is the first paper to study strategic price and range responses to subsidies and model
how these responses interact with indirect network effects. Doing so allows me to carefully
study the strategic reactions of firms to subsidies and how indirect network effects affect these
reactions. Price and range adjustments can alter consumer choices and, thus, the effects of sub-
sidy schemes. Second, I contribute to a wider literature studying environmental policies in car
markets by comprehensively evaluating the economic effects of EV purchase and charging sta-
tion subsidies. By studying strategic supply-side responses to subsidy schemes, I contribute to
the strand of this literature that investigates supply-side effects of environmental policies (Knit-
tel, 2011; Klier and Linn, 2012; Reynaert, 2021; Leard, Linn, and Springel, 2023). By compar-
ing different EV subsidy schemes, I contribute to another strand that studies and compares the
effectiveness of different policy tools (Pavan, 2017; Grigolon, Reynaert, and Verboven, 2018;
Durrmeyer and Samano, 2018). Third, I contribute to two strands of the IO literature. First, my
paper relates to the literature on attribute provision (Spence, 1975; Sheshinski, 1976; Mussa
and Rosen, 1978; Maskin and Riley, 1984; Fan, 2013; Crawford et al., 2019) that studies how
firms provide a product attribute (quality) in imperfectly competitive markets. Second, the pa-
per also relates to the pass-through literature (Bulow and Pfleiderer, 1983; Stern, 1987; Kim
and Cotterill, 2008; Weyl and Fabinger, 2013) studying how firms adjust prices in response
to subsidies, taxes, or marginal cost changes. I contribute by bridging a gap between these
two strands by providing a framework that allows for a multi-dimensional response in prices
and product attributes to subsidies, taxes, and marginal cost changes in imperfectly competitive
markets in which network effects are present. In this regard, my paper resembles the approach

1For an overview of this literature, see Rapson and Muehlegger (2023)
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of Gaudin (2024), who provides a theoretical framework for predicting the directions of price
and quality responses to subsidies, taxes, or marginal cost changes. Finally, I contribute to a
recent literature endogenizing product attribute choice (Fan, 2013; Crawford et al., 2019) by
allowing product attribute choices to interact with indirect network effects.

The paper is structured as follows: Section 2 describes the car industry in general, the EV
industry in particular, and the data used in the estimation. Section 3 describes the structural
model, and Section 4 outlines the estimation strategy. Section 5 presents the results from the
structural model, Section 6 presents the results from the counterfactuals, and Section 7 con-
cludes.

2 Industry Description and Data

The setting for the empirical analysis is the new car market in Germany. A special focus lies
on the electric car market, including public charging stations. In past decades, the German new
car market has been characterized by a predominance of combustion engine cars using gasoline
or diesel as fuel. Simultaneously, sales of electric vehicles increased more than twentyfold
between 2012 and 2018, and the number of charging stations increased by almost 15.

2.1 Industry description

The market for electric vehicles. After having been dormant for more than 100 years, elec-
tric vehicle technology returned to prominence in the late 1990s. Both the Honda Insight and
the Toyota Prius used a hybrid engine that combined fuel and electric powertrains. However,
it was impossible to plug this electric engine into an external source. Over the past decades,
two new technologies have emerged. One is the plug-in hybrid electric vehicle (PHEV), which
combines a fuel engine with an electric battery pack that can be plugged into an external power
source. The other is a pure battery electric vehicle (BEV), whose powertrain unit consists only
of a battery pack (throughout the remainder of the text, “BEV” is used synonymously with
“battery electric vehicle”, “PHEV” is used synonymously with “plug-in hybrid electric vehi-
cle” and “EV” refers to both “BEV” and “PHEV”). Electric vehicles have been singled out
by policymakers and firms alike as key technologies to decarbonize the transportation sector
in pursuit of containing the rise of global temperatures to below 1.5◦C. Governments world-
wide have introduced subsidies and tax incentives for electric vehicles to buttress diffusion.
The scope and design of these subsidies vary considerably across and sometimes even within
countries. Some countries use flat subsidies, and others make subsidies dependent on character-
istics such as the driving range or battery size.2 Global government spending on EVs increased
substantially from $1 billion in 2012 to $15 billion in 2018.

2For detailed overviews, see Yang, Slowik, Lutsey, and Searle (2016) and Rokadiya and Yang (2019).

5



0

500

1000

1500

2010 2011 2012 2013 2014 2015 2016

Figure 1: Lithium-ion cell price estimates (USD per kWh)

Different estimates of lithium-ion cell prices. Source: Hsieh et al. (2019)

Another feature of the electric vehicle market is the rapid decrease in lithium-ion cell (LICs)
cost. Numerous LICs make up the battery pack of an electric vehicle. This battery pack propels
the car, and its size is the most critical determinant of the driving range. Figure 1 shows differ-
ent approximations of the evolution of lithium-ion cell prices. Although there is considerable
variation in the estimates, there is a clear downward trend. This trend suggests that providing a
higher driving range has become considerably cheaper over the past decade.

Significant barriers to the mass adoption of electric vehicles exist: EVs are more expensive
and have a shorter driving range than combustion engine cars. In consumer surveys, the high
cost and small range of EVs repeatedly show up as the most critical determinants of whether
to purchase an electric vehicle, together with the charging station network density (see, for in-
stance, Schoettle and Sivak 2018; Carley, Krause, Lane, and Graham 2013; Rezvani, Jansson,
and Bodin 2015). Both a low range and low charging station network density contribute to a
low perceived quality of EVs and low autonomy.

Electric vehicles in Germany. The automobile sector is a key industry in Germany, account-
ing for 9.8% of gross value added and employing approximately 880,000 people, with another
900,000 jobs heavily depending on the industry, for a combined share of 7.2% of total employ-
ment.3 Germany is home to three of the largest 15 car manufacturers in the world as measured
in sales and was ranked fourth in the world in terms of motor vehicle production during the
sample period.

Over the past decade, the German government has implemented measures to boost sales
of electric vehicles. One such measure was the Government Program for Electric Mobility
of 2016. Part of this program was a support scheme that offered a AC 2,000 subsidy for the
purchase of battery electric vehicles and a AC 1,500 subsidy for the purchase of plug-in hybrid
electric vehicles. The car had to have a list price below AC 60,000 to be eligible for the subsidy.4

3https://www.iwkoeln.de/en/studies/iw-reports/beitrag/thomas-puls-manue
l-fritsch-the-importance-of-the-automotive-industry-for-germany.html

4Such maximum price provisions are quite common and are or were used in France, the UK, and the Nether-
lands, for instance (see http://tinyurl.com/ydmnyc82, http://tinyurl.com/y7a57zxm, and
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In total, the government provided AC 600 million in subsidies.5 The program also provided a
total of AC 200 million in funding for new charging stations, starting in 2017. The amount of the
subsidy depended on the type of charging stations. Charging stations with a charging capacity
of up to 22 kW (also called Level 2 chargers) received up to AC 3,000 towards installation and
AC 5,000 towards connection to the electricity grid (if the charging point was connected to the
medium-voltage grid, the connection subsidy was up to AC 50,000). Level 2 chargers are the
dominant type of charger in my sample, representing almost 87% of all public chargers at
the end of 2021. Appendix Table A2 gives an overview of the number and type of chargers
available by year.

The plan reinforced the government’s goal to have 1 million electric cars on the streets
by 2020 and 6 million by 2030.6 The budget for the EV purchase subsidies was forecast to
be sufficient to give subsidies until 2019. However, by June 2017, only approximately 5% of
the total budget had been used, and in 2018, the market share of battery electric vehicles was
only 1.2%, with approximately 34,000 annual car sales. These lackluster sales numbers led
the government to increase the subsidy scheme’s scope as part of a federal climate protection
act in 2019. This act increased the government subsidy for battery electric vehicles to up to
AC 3,000, depending on the list price. The act also increased tax incentives for electric vehicles
and introduced a price of AC 10 per ton on CO2 from 2021 onward, which has since increased to
AC 30 per ton on CO2. In total, the government pledged AC 9 billion for subsidies, tax reductions,
and charging infrastructure. Finally, in response to the economic crisis caused by the COVID-
19 pandemic, the government doubled the subsidies to AC 6,000.

At the same time, individual federal states also introduced support for e-mobility. In partic-
ular, many states introduced support schemes for charging stations. These support schemes are
often similar in design to the one implemented by the federal government. However, the state
schemes differ both in the size of financial incentives and their introduction date.

The market for public chargers is very fragmented, with the five largest firms combined
owning only 16.8% of charging points in 2021 and the 10 largest firms owning 26% of charging
points in 2021. Overall, some 3,300 firms and municipalities own charging points. Concentra-
tion is somewhat higher at the state level, as the largest firms tend to focus on specific areas of
Germany. Until the end of 2018, car makers were practically absent from the charging station
side.7 As of 2021, only Volkswagen had started to build some charging stations, albeit at a

http://tinyurl.com/4jbyudxj). In the structural model, I ignore this maximum price. Only two models
cross it in some of the counterfactuals, which does not affect the paper’s main results.

5Car manufacturers pledged to match the government subsidy by granting a rebate equal to the subsidy amount.
The program also provided various tax benefits for buying, using, and charging electric vehicles. See also https:
//www.bmwi.de/Redaktion/EN/Artikel/Industry/regulatory-environment-and-inc
entives-for-using-electric-vehicles.html

6https://www.bmwi.de/Redaktion/DE/Downloads/P-R/regierungsprogramm-elekt
romobilitaet-mai-2011.pdf?__blob=publicationFile&v=6

7The obvious exception is Tesla, which has rolled out its own network. However, throughout the sample period,
Tesla’s chargers were not available to EVs of other manufacturers, which is why Tesla chargers are not included
in the analysis.
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very low level and mostly around their factories. Another carmaker initiative is Ionity, a firm
jointly owned by several carmakers (VW, BMW, Daimler, Ford) to deploy a network of charg-
ers along European freeways. However, at the end of 2021, Ionity had provided only 0.77% of
all charging points.

A distinguishing feature of EVs compared to conventional cars is the possibility of charging
the battery at home. Studies suggest that 49%-80% of charging in Germany occurs at home
and 8%-25% at public chargers (see for instance Preuß, Kunze, Zwirnmann, Meier, Plötz, and
Wietschel, 2021). These figures suggest that public chargers satisfy a significant amount of
demand for charging. Moreover, public chargers are crucial in incentivizing EV uptake among
consumers who do not have access to home charging. In that sense, more public charging sta-
tion entry can induce latent demand of consumers who have not previously considered buying
an EV.

2.2 Data

I build a comprehensive data set of new car purchases in Germany from 2012 to 2018 and
charging station entry in Germany from 2012 to 2021. I do so by combining several data
sources.

Car registrations. I use publicly available data from the German Federal Motor Transport
Authority (KBA). This data set contains yearly new registrations at the state level for every car
model.8 A firm-and-trim identifier (“HSN/TSN”) defined at a very granular level identifies a
model. It differs by car class, body type, engine type, kilowatts, weight, and the number of
doors. I follow the previous literature on demand estimation for car markets in treating new
registrations as sales.

Car prices and characteristics. I scraped data on car prices and characteristics from the
website of the General German Automobile Club (ADAC), giving me a comprehensive data set
containing a wide range of car characteristics. These characteristics include the driving range of
cars. The data also include the list price of cars, which I use in the estimation as the transaction
price, again following the literature on demand estimation for car markets. The ADAC data
also contain the HSN/TSN identifier, allowing me to match the two data sets relatively easily,
except for some observations requiring manual matching.

EV charging stations. I obtain the number of charging stations for electric car batteries
from a publicly available data set listing all public charging stations from the Federal Network
Agency (BNetzA).9 The data set contains each station’s opening date and its location. The data

8Germany consists of 16 states (“Bundesländer”). Three states (Berlin, Hamburg, and Bremen) are “city-
states” whose boundaries coincide with the cities themselves. The other 13 states are larger in area, ranging from
approximately the land area of Rhode Island to approximately that of South Carolina. The population of the 16
states ranges from approximately 680,000 (roughly comparable to that of Alaska) to approximately 18 million
(roughly comparable to New York state).

9In the remainder of the paper, I will use ”public charging stations” and ”charging stations” interchangeably.
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Figure 2: Evolution of price and range of battery electric vehicles

This figure shows the average price and range per year relative to 2012 values that are normalized to 1.

also gives information on the type of charging station (capacity in kW and the type of grid
connection).

Suppliers. I use data on manufacturer-supplier links from MarkLines. This data allows me
to identify the country where a given model is produced and the identity and location of every
EV’s battery supplier. The MarkLines data also contains model-level sales in every European
country.

Further data. I use data from the German Socio-Economic Panel (SOEP) to build income
distributions at the state-year level. To do so, I fit the mean and variance of a log-normal
distribution using the observed household income draws of the SOEP. Additional data on the
number of households comes from the Federal Statistics Office, and CPI data are from Federal
Reserve Economic Data. To have a measure of usage cost of different cars, I build a measure of
fuel cost in AC /100 km using yearly average gas price data from ADAC and electricity cost data
from the German Economics Ministry. In addition, I also collect information on the number of
gas stations and their prices using data published by tankerkoenig.de. This data is only available
from the end of 2014 onward, which is why I only use it on the charging entry side and not in
the demand estimation.

The resulting data set defines a product at a very detailed level. A trade-off exists between
having a very granular product definition and a more aggregated definition for tractability. In
my final data set, I define a product at the firm/model/engine type level, with the possible engine
types being combustion (ICE), plug-in hybrid (PHEV), or battery electric (BEV) engines (e.g.,
VW Golf ICE vs. Renault Zoe BEV). I use the price and characteristics of the most frequently
sold variant nationally. I reduce the data size further by leaving out firms and models with low
sales. In addition, I delete models with a nominal list price above AC 100,000. I set the size of
the potential market equal to the number of households in a given state in a given year. In total,
the data consists of 28,288 year-state-product observations. Detailed summary statistics can be
found in Appendix Table A1.
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Figure 2 shows how the average price and range of battery electric vehicles developed
during the sample period. Prices slightly increased, and the range rose by almost 60%. Both
the entry of new cars with a higher range and range upgrades of existing cars contributed to this
increase in range (see also Appendix Figures B1 and B2). It is unclear from Figure 2 to what
extent falling LIC prices and subsidies drove these trends. The structural model will allow me
to disentangle these effects.

2.3 Reduced-form evidence

Several reasons suggest that firms adjust range frequently and in response to policy changes
in the German market. First, range is relatively easy to adjust in the short run compared to
attributes such as the size of the car, which is typically fixed over a 7 to 8-year horizon. Ap-
pendix Figure B2 shows the evolution of range for selected models in my data. We can see that
range is adjusted frequently by firms. I also report other attributes. The footprint, height, and
horsepower of BEVs stayed constant for most models or changed at most once. Quotes from
industry executives and news articles on EVs corroborate this. In a 2016 investor call, in re-
sponse to a question pointing to BMW only introducing their next new EV in 2020, then-CEO
Harald Krüger noted “What we do in between, (...), we’re increasing the battery capacity of
the i3 which will have then 50% more model range (...) and we’re still working in the future
on more.”10 A news article from 2017 talking about a range increase for Volkswagen’s e-Golf
describes the source of the range update: “Improved battery cells will allow Volkswagen to fit
more powerful batteries into the same physical space occupied by the current batteries.”11

Second, manufacturers tailor EVs to specific markets. In 2021, then Volkswagen CEO Her-
bert Diess announced, “Volkswagen is bringing a wide range of highly attractive BEVs tailored
to the U.S. market (...)”.12 In an investor call in 2019, VW Director of Group Sales Chris-
tian Dahlheim noted “(...) that most models are country specific.”13 In 2018, the Mitsubishi
Outlander received a range upgrade in Europe, which was introduced in the US only 3 years
later.14. While this tailoring seems to be mostly done at the European level, it is reasonable
to expect that the German market plays a crucial role in tailoring cars to the European mar-
ket: Throughout the sample, Germany was the largest market for cars in Europe and the fourth
largest worldwide in terms of new car sales. Appendix Table A8 compares sales numbers of
EVs across European countries in 2018. For most models, Germany was one of the three most
important markets and accounted for a substantial share of European sales. These reasons mo-
tivate my choice that firms strategically set price and range in response to German demand and

10Bayerische Motoren Werke AG (BAMXY) on Q1 2016 Results - Earnings Call Transcript
11https://www.motortrend.com/news/volkswagen-e-golf-to-get-30-percent-dri

ving-range-improvement/
12Volkswagen Media information No. 123/2021
13Volkswagen AG ADR (VWAGY) Management on Q3 2019 Results - Earnings Call Transcript
14https://insideevs.com/news/394837/mitsubishi-expected-to-update-outland

er-phev-us/
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Table 1: Reduced-form results

Dependent Variable: Range

Subsidy -28.96 -45.85 -44.30∗∗∗ -59.86∗∗ -64.63∗∗

(18.84) (25.05) (11.99) (24.41) (26.06)

R2 0.82307 0.95274 0.83272 0.95581 0.97114

Dependent Variable: Price

Subsidy -4.382 -1.111 -4.798∗∗ -4.432∗∗ -5.237∗∗∗

(2.785) (3.345) (1.833) (1.344) (1.309)

R2 0.96047 0.98426 0.96110 0.98694 0.99223

Further controls Yes Yes
Year FE Yes Yes Yes Yes Yes
Firm FE Yes Yes
Model FE Yes Yes
Body FE Yes Yes Yes Yes
Class FE Yes Yes Yes Yes
Product FE Yes

Observations 152 152 152 152 152

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Observation is a model-year. There are 45 models in the data set, and the data runs from 2012-2020. I only
use data on BEVs sold in Germany.

policies.
To better understand whether prices and range adjust to subsidies, I present some reduced-

form evidence. For this, I extend the data set of BEV prices and characteristics to the end
of 2020. Doing so has two advantages: First, it provides me with 2 more years of data in
which more BEVs entered or were upgraded. Second, it allows me to exploit an increase in the
purchase subsidy in late 2019. The subsidy increased to AC3,000 for BEVs with a list price of
less than AC40,000 and to AC2,500 for BEVs with a list price between AC40,000 and AC65,000. I
regress the driving range and price of all BEVs in the sample on the amount of the subsidy the
BEV qualifies for, car characteristics, and different levels of fixed effects.

The results are in Table 1. I estimate a negative impact of the subsidy on both price and
range. The results are relatively robust across the different specifications for both price and
range. They suggest two effects: First, price pass-through seems to be more than 100%. The
results in the last column suggest that a AC1,000 subsidy increase is associated with about a
AC5,000 price reduction. Second, firms seem to reduce the driving range of cars when subsidies
increase. The last column suggests that a AC1,000 subsidy increase is associated with an almost
65km decrease in the range. This evidence is in line with findings in other countries. Jia Bar-
wick et al. (2024) show that in response to a range-based subsidy, firms adjusted their driving
range by bunching around cut-offs present in the Chinese subsidy scheme at the time.

Caution should be taken with claiming causality here. These subsidies were introduced at
a time when battery costs rapidly declined and subsidized cars competed with non-subsidized
cars, making it difficult to define a proper control group. Moreover, the public charging net-
work expanded rapidly over time, which likely affected and interacted with firm strategies.
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Disentangling the effect of subsidies from these other factors requires a structural model.

3 Empirical Model

This section introduces a structural model of demand and supply for new cars and the entry of
public electric charging stations. I assume that each period starts with a given number of circu-
lating EVs. The game then proceeds with car makers choosing the price and range. Consumers
then make their purchase decisions and charging stations enter. The main implication of this
timing assumption is that it makes the indirect network effects explicit in the price and range
decisions of electric car producers.1516

3.1 Car demand

A state m observed in year t defines a market. There are Mmt consumers in each market
mt. Each consumer i chooses one option j, either the outside option j = 0 or one of the
j = 1, . . . , J differentiated products. Choosing the outside option means that the consumer
buys a used car or does not buy a car at all. Choosing one of the “inside” products means
buying a new car. The utility that consumer i enjoys from purchasing one of the products
j = 1, . . . , J is

uijmt = βb
iBEVj + βp

i PHEVj + βr
i rjt + βdlog(djmt)︸ ︷︷ ︸

only EVs

−α pjt
yimt

+ xjmtβ
x
i + ξjmt + εijmt︸ ︷︷ ︸

all cars

, (1)

where BEVj (PHEVj) is an indicator equal to one if the product is a BEV (PHEV), rjt is
the range of product j, djmt is the number of charging stations available in state m in year
t, pjt is its price, yimt is the income of consumer i, and xjmt is a vector of observed product
characteristics. ξjmt is an unobserved characteristic of product j in market mt, and εijmt is a
consumer-specific unobserved taste shock assumed to be an i.i.d. type-I extreme value. The
parameter vector βx

i consists of mean tastes for characteristics and, for some characteristics,

15An alternative way of modeling this game would be to assume car makers and charging stations move simul-
taneously. In such a setup, the indirect network effects are no longer explicit in the price and range choices but
will still be present when performing counterfactual analyses. Appendix D shows the results from such a model.

16The model is static. Carmakers update their models every 7-8 years, and consumers use a vehicle for 5-6
years. Hence, estimating a dynamic model requires a very long panel, which I do not have. Also, given the
importance of cars for many consumers, it is unlikely that consumers defer car purchases in expectation of future
events and rather choose a different option instead. My model still captures the main channel through which the
chicken-and-egg problem manifests itself on the demand side since I model substitution between EVs and other
cars. Doing so requires endogenous price and range choices to be taken into account, as well as their interaction
with indirect network effects, which is already challenging. Adding dynamics on top of these challenges is beyond
the scope of this paper.
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random coefficients capturing unobserved heterogeneity in the valuation of product character-
istics. For a characteristic k, we have βk

i = βk+σkνki with νki drawn randomly from a standard
normal distribution and σk being the standard deviation of preferences. The parameter βr cap-
tures preferences for range, βd captures preferences for the size of the charging network, and α
captures price sensitivity. I assume that consumers care only about the driving range of battery
and plug-in hybrid electric vehicles and not the driving range of combustion engine cars. In
the model, this translates into setting rjt = 0 for products with a combustion engine. Likewise,
log(djmt) is zero if j is a combustion car.17 The utility from purchasing the outside option is
normalized to ui0mt = εi0mt.

Consumer i in market mt chooses alternative j = 0, . . . J that maximizes her utility. Each
consumer is characterized by her income yi and her vector of idiosyncratic preferences νi. In-
come yi follows a log-normal distribution whose parameters I estimate based on draws from
the observed income distribution. Integrating over the individual-specific valuations for char-
acteristics gives the choice probabilities:

sjmt(p, r, d, x, ξ;σ) =∫ ∫
exp(δjmt + µijmt(pjt, rjt, djmt, xjmt, ξjmt;σ))

1 +
∑J

k=1 exp(δkmt + µikmt(pkt, rkt, dkmt, xkmt, ξkmt;σ))
dF (ν)dG(y),

where F (·) is the joint CDF of the unobserved taste shocks and G(·) is the distribution of
income. Further, δjmt is the mean utility incorporating all terms from (1) that do not vary
across individuals, and µijmt = −α pjt

yimt
+

∑
k σ

kνki x
k
jmt captures individual deviations from

the mean utility. Finally, defining the observed market share as sjmt =
qjmt

Mmt
, with qjmt being

the observed quantity of product j in market mt, in addition to stacking observed and predicted
market shares into a vector, we obtain the system of equations smt = smt(p, r, d, x, ξ;σ) for
each market mt.

3.2 Car supply

I model the profit-maximizing price and range decisions of F multi-product firms for each year
t. I assume the product portfolio of firms to be given and that firms have already chosen all
product characteristics except for the range of BEVs.18 Firms then maximize profits by setting
the price of all products in their portfolio as well as setting the range of their BEVs at the

17Evidence from numerous consumer surveys motivate these assumptions. See, for instance, https://ww
w.compromisorse.com/upload/noticias/002/2794/accentureelectricvehicle.pdf.
Specifically for Germany, see https://www.aral.de/content/dam/aral/business-sites/de/
global/retail/presse/broschueren/aral-studie-trends-beim-autokauf-2019.pdf.
The latter study (in German) also shows that consumers do not take range into account when deciding on the
purchase of a combustion engine car.

18I do not model range decisions of PHEVs because the technology is different and range levels have stayed flat
over the sample period. In addition, Grigolon, Park, and Remmy (2199) find that PHEVs are used mainly in fuel
mode.
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national level. Firms take into account indirect network effects, which accrue for both BEVs
and PHEVs. I will defer the analysis of the role indirect network effects play in firm decisions
until after the charging station entry side has been introduced.

The profit in year t is then the weighted sum of profits from each statem, and firm f ’s profit
maximization problem can be written as follows:

max
p,r

πft ≡
∑
j∈Jft

(
pjt + λjt −mcjt(rjt, wjt; θs)

)
sjmt(p, r, d, x, ξ;σ)Mmt, (2)

where Jft is the product portfolio of firm f , λjt is a subsidy, mc(·) is the marginal cost of
product j, wj is a vector of observed cost-shifters and θs is a vector of parameters entering
the marginal cost function. The subsidy can be made dependent on attributes such as an EV’s
range in counterfactuals. Consumer prices are given by pjt and firm prices by pjt + λjt.19 The
first-order conditions with respect to price and range are then given by

∂πft
∂pjt

=
∑
m

ϕmt

{
sjmt +

∑
k∈Jft

(
pkt + λkt −mckt

)∂skmt

∂pjt

}
= 0 (3)

∂πft
∂rjt

=
∑
m

ϕmt

{
− ∂mcjt

∂rjt
sjmt +

∑
k∈Jft

(
pkt + λkt −mckt

)∂skmt

∂rjt

}
= 0, (4)

where ϕmt =
Mmt∑
m′ Mm′t

is the weight of state m. Equation (3) is the usual first–order condition
with respect to price, where firm f trades off increasing the markup on product j by increas-
ing the price against losing market share due to this price increase, adjusted by the effect of
changing j’s price on the demand of other products that firm f offers.

When choosing the range, firm f trades off the decrease in the markup from providing
more range (intensive margin) against the higher demand arising from this range increase (ex-
tensive/switching margin) and the cannibalization effect on the other products in firm f ’s port-
folio. Loosely speaking, equilibrium range decreases with a higher marginal cost of range
(which squeezes the markup) and increases with a higher demand semi-elasticity with respect
to range (which increases the extensive margin).20

Appendix E gives further details on the supply model.

3.3 Charging station entry

The exposition of this section closely follows Springel (2021). For more details, refer to her
exposition of the model. The main difference between her framework and mine is that I model

19I also account for a 19% value added tax (vat) levied on cars in Germany, which means that firm prices are
given by p̃jt = pjt/(1 + vat) + λjt. I ignore vat in the exposition for notational convenience.

20I do not allow for fixed costs in adjusting range because I model short-term adjustments once the other
attributes have been chosen, such as using more battery cells per car or using denser, more expensive cells. These
adjustments will mainly be reflected in marginal cost,
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a car supply side with endogenous price and range choices in which I explicitly consider the
effect of indirect network effects on price and range decisions.

Let h be one of dmt stations in state m in year t. A station h enjoys per-consumer profits

Dhmt(p
e
hmt, p

e
−hmt, dmt)(p

e
hmt − cehmt),

where Dhmt is the per-consumer demand for station h, pehmt is the price station h charges and
cehmt is the marginal cost of station h.21 I assume stations have perfect foresight. Following
Bresnahan and Reiss (1991); Gandal, Kende, and Rob (2000), and Springel (2021), I assume
that i) per-consumer demand functions are symmetric, ii) each charging point faces the same
marginal and sunk entry costs and iii) each station h gains an equal share of the market.22 Under
these assumptions, an equilibrium exists in which each station charges the same price, and we
can express the period–t profits upon entry

πmt = QEV
mt

D(pe(dmt))(p
e − ce)

dmt︸ ︷︷ ︸
≡ϑ(dmt)

, (5)

where QEV denotes the stock of electric vehicles circulating in state m in year t.23 Following
the previous literature, I assume the equilibrium price to be a decreasing function of the number
of stations. A station deciding to enter in year t incurs a sunk cost of entry Fmt and earns a
sequence of yearly profits. In a free-entry equilibrium, a firm must be indifferent between
entering and starting to earn the profit sequence in t and entering in t+ 1, which implies

− Fmt + ρπm,t+1 + ρ2πm,t+2 + ...

= −ρFm,t+1 + ρ2πm,t+2 + ρ3πm,t+3 + ..., (6)

with ρ the discount rate. Combining equations (5) and (6) and taking the natural logarithm
yields the following equation:

log(ϑ(dmt)) = − log(ρ)− log(QEV
mt ) + log

(
Fmt − ρFm,t+1

)
(7)

Letting ϑ(dmt) = (κdmt)
ι and assuming that log

(
Fmt−ρFm,t+1

)
is a linear function of national

and state charging station subsidies, a linear time trend and state demographics (respectively

21I add the superscript e to avoid confusion with car prices and marginal costs.
22Although different types of charging stations do exist (slow vs. fast), the vast majority of charging stations

built over the sample period were relatively similar in their charging speed.
23Since I only have information on the BEV stock, I set the initial EV stock equal to the initial BEV stock on

January 1, 2012. I calculate the stock in year t as stockt = newsalest + stockt−1 + scrappaget−1. I only have
information on BEV scrappage, which was around 10% of the stock every year. Accordingly, I assume total EV
scrappage to be 10% each year. The results are robust to assuming no scrappage as well as assuming a larger
initial stock to account for PHEVs bought before 2012.
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fixed effects), I obtain the following estimating equation:

log(dmt) = υ1 + υ2 log(Q
EV
mt ) + υ3National Subsidiesmt + υ4State Subsidiesmt

+ υ5ϱt + xc
′

mtυ6 + ϵct (8)

3.4 Firm choices and indirect network effects

The assumed timing of the game modifies the first–order conditions of firms. In particular,
market share derivatives with respect to price and range change as firms anticipate the effect
of their actions on the charging station side. Analyzing the role of indirect network effects
in firms’ price and range choices requires some further notation. Let the partial derivative of
model k’s share with respect to model j’s price absent network effects (i.e., βn = 0 or λ1 = 0)
be given by

ηkj ≡


∫ ∫

− α
yi
sij(1− sij)dF (ν)dG(y) if k = j∫ ∫

− α
yi
sijsikdF (ν)dG(y) otherwise

and the station semi-elasticity absent indirect network effects (i.e., υ2 = 0) be given by

γj ≡ βd

∫ ∫
sj(1− sj)dF (ν)dG(y).

Let J EV denote the set of EVs in the market. Note that I suppress the dependence of market
shares on attributes, prices, and parameters, as well as market and time subscripts, for notational
convenience. From Springel (2021), we know that we can then express the partial derivative of
the EV market share (denoted sEV ) with respect to the price of product j as

∂sEV

∂pj
=

∑
k∈JEV

ηkj +
υ2
sEV

∂sEV

∂pj

∑
k∈JEV

γk =

∑
k∈JEV ηkj

1− υ2
sEV

∑
k∈JEV γk

The partial derivative of product j’s share with respect to its price is then given by

∂sj
∂pj

= ηjj +
∂sj

∂ log d

∂ log d

∂QEV

∂QEV

∂pj

= ηjj + υ2γj

∑
k∈JEV ηkj

sEV − υ2
∑

k∈JEV γk
,
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where d denotes the number of charging stations.24 Assuming that sEV − υ2
∑

k γk > 0 25

we can directly see two opposing forces acting on the augmented partial derivative: On the
one hand, the network effect directly related to the own-product market share makes ∂sj

∂pj
more

negative, because raising the price reduces sales of the own product, resulting in lower charging
stations, which in turn lowers sales further. This gives the firm fewer incentives to increase
prices. On the other hand, the network effect related to rival product market shares makes
∂sj
∂pj

less negative because raising the price will increase rival-product sales, which increases
the number of charging stations and, in turn, leads to higher own sales. This effect gives the
firm more incentives to raise prices. Since we would expect ηjj >

∑
k ̸=j ηkj , indirect network

effects will make ∂sj
∂pj

and as a consequence also the own-price elasticity more negative.
We can similarly derive the cross-price derivatives, which become

∂sj
∂pk

= ηjk + υ2γj

∑
l∈JEV ηlk

sEV − υ2
∑

l∈JEV γl
(9)

Since cars are substitutes, we have ηjk > 0. If ηjj >
∑

k ̸=j ηkj and ∂sj
∂pj

, cross-price derivatives
will become less positive or even negative, in which case EVs will act as complements.

Analogously, we can derive the own-and cross-range derivatives. The effects will mirror the
analysis of price derivatives above. Let the partial derivative of model k’s share with respect to
model j’s range absent network effects be given by

ηrkj ≡


∫ ∫

βr
i sij(1− sij)dF (ν)dG(y) if k = j∫ ∫
βr
i sijsikdF (ν)dG(y) otherwise

The partial derivative of product j’s share with respect to product k’s range is then

∂sj
∂rj

= ηrjj + υ2γj

∑
k∈JEV ηrkj

sEV − υ2
∑

k∈JEV γk
if k = j,

∂sj
∂rk

= ηrjk + υ2γj

∑
l∈JEV ηrlk

sEV − υ2
∑

l∈JEV γl
if k ̸= j

Since increasing the range increases the own-product market share, indirect network effects
will make the own-range derivative larger. Since increasing the range absent indirect network
effects decreases rival EV shares, indirect network effects will become less negative or even
positive, in which case EVs will act as complements.

24Note that I shut down possible dynamic considerations here: Setting a lower price today may lead to more
charging stations in the next period since the stock of EVs will be larger. By shutting down this demand-enhancing
effect, I may underestimate the incentives to charge a lower price, so the effects found can be thought of as a lower
bound. Writing down the full dynamic pricing problem in a multi-product oligopoly setting with complementary
charging station entry is beyond the scope of this paper and left to future research.

25This will hold if the size of the indirect network effects is ”small enough” relative to the size of the EV market.
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These modified first order conditions affect price and range choices: Equations (11) and
(12) pin down optimal price and range levels in the presence of subsidies. The subsidy will
alter both price and range since both are a function of the subsidy in equilibrium. The optimal
price and range levels are also a function of the indirect network effects as they depend on the
(modified) price and range derivatives. The matrices ∆p and ∆B

r hold these price- and range
derivatives, respectively.

4 Estimation

4.1 Instrumental variables

Estimation of the demand side parameters suffers from the well-known endogeneity issue re-
lated to price and, in this case, also to range: As the demand- and supply-side shocks are
realized before the price and range choices, price and range may be correlated with these un-
observables. The utility function also includes the number of charging stations available to
electric vehicles. The charging station network is itself likely to depend on the electric vehicle
base, creating an endogeneity issue (Pavan, 2017; Springel, 2021; Li, 2023). Instruments are
needed to account for this endogeneity issue. At the same time, instruments also help iden-
tify the random coefficients, thus serving a dual role. Recent literature has pointed out that
the classic BLP instruments, consisting of simple sums of product characteristics, tend to per-
form rather poorly (Reynaert and Verboven, 2014; Gandhi and Houde, 2019). This literature
suggests finding approximations to optimal instruments as in Chamberlain (1987). In my es-
timation, I use differentiation IVs as introduced by Gandhi and Houde (2019). The idea is to
describe the relative position of each product in the characteristics space. I build three variants
of differentiation IVs: a local variant that counts products close in characteristic space and a
quadratic variant that sums squared differences between product characteristics:

Zk,local
jt =

∑
l∈C\{j}

1{|Hk,jlt| < sd(Hk)}, Zk,quadratic
jt =

∑
l∈C\{j}

H2
k,jlt,

where |Hk,jlt| is the absolute value of the difference between products j and l in characteristic k,
sd(Hk) is the standard deviation of characteristic k across markets, and C is the set of products
considered. I build a discrete variant for discrete variables that counts the number of products
with the same value for the characteristic:

Zk,discrete
jt =

∑
l∈C\{j}

1{|Hk,jlt| = 0}

I build four kinds of instruments of each variant: one considering own-firm products, one
considering rival-firm products, one considering own-firm products of the same engine type
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(BEV, PHEV, or ICE), and one considering rival-firm products of the same engine type.
I build the local and quadratic variants for all continuous characteristics and the discrete

variant for all discrete characteristics. I also create local and quadratic variants for a price
index, obtained from regressing the observed price on demand- and cost-shifters. The range
of BEVs is endogenous, but I assume that the range of PHEVs is not. This is why I build
the local and quadratic variants for the range of plug-in hybrid vehicles. I also build the local
and quadratic variants for battery efficiency (measured in kWh/100 km), which I assume to be
exogenous. I use a subset of all the instruments that I create.

Car demand: price I exploit data on manufacturer-supplier links that allows me to iden-
tify a specific model’s country of production. Following Grieco, Murry, and Yurukoglu (2024),
I use the PPP-adjusted exchange rate between Germany and the country of production, as pro-
vided in the Penn World Tables. This shifter accounts for cost changes via wage changes and
via nominal exchange rate changes. I also use an index for steel prices (obtained from Ibis-
World) that I interact with the car’s size (length x width x height).

The differentiation IVs also help to identify the price parameter as they shift markups. For
example, a car facing strong competition along certain product dimensions should earn a lower
markup. On the other hand, a car that has no close competitors in the attribute space will be
able to earn a high markup for firms as diversion to other products will be limited.

Car demand: range. I build two cost shifters to instrument for range: First, I use the
Bloomberg NEF battery cost estimate and interact it with the size (length x width x height) of
the car. Second, I exploit manufacturer-supplier data to identify the battery supplier of each
EV and interact the exchange rate between the Euro and that supplier’s home country with the
car’s size. Both these instruments use important factors shifting the marginal cost of providing
range. The impact of these cost shocks scales with the size of the car, given that larger cars
tend to deploy larger batteries.

I also build a differentiation instrument built on a range index akin to the price index de-
scribed above. In particular, I count the number of cars whose predicted range is below 100km
and build the quadratic version of this instrument for own- and rival-firm products. The idea
behind this instrument is to account for competition between pure electric and plug-in hybrid
cars. The other differentiation instruments also help identify the range parameter: an EV facing
tight competition will be constrained to offer a higher range, hence offering higher ”quality” in
this dimension. The range parameter is also identified through the quadratic instruments that
count the squared characteristics of close rivals: For example, competing with many heavy cars
will make it easier for firms to offer a lower range, as heavier cars tend to suffer from low range,
given the energy needed to move this weight. Finally, the exogenous characteristics of the car
will also help to identify the range parameter as they are good predictors of range. Note that
the assumption on car maker’s choices ensures the validity of these instruments: Car attributes
other than price and range are set beforehand, ensuring they are uncorrelated with the error
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term.

Car demand: charging stations. I account for the endogeneity of the charging station net-
work by including subsidies as instruments. These subsidies vary across years as well as across
states and exogenously shift the number of charging stations but do not directly affect the utility
of consumers.

Car supply. On the supply side, firms choose range after they have fixed all other product at-
tributes. Range choices can thus be correlated with unobserved marginal cost shocks. I account
for this endogeneity issue by constructing differentiation IVs built on the exogenous character-
istics entering the marginal cost function. I also include the observed exogenous characteristics
entering the baseline marginal cost, as these characteristics were chosen before the range. As
on the demand side, I use a subset of the instruments that I create.

Charging station entry. Just like on the car demand side, there is a feedback loop between
the number of stations in a given period and the cumulative EV base, which includes newly
bought cars in that period. I account for this issue by instrumenting the cumulative EV base
with the gas station density in the given state in the given year. A larger density of gas stations
leads to lower gasoline prices (see Haucap, Heimeshoff, and Siekmann, 2017). Lower gasoline
prices, in turn, make the overall costs of combustion cars cheaper relative to electric cars, which
leads to a lower EV base. In particular, I draw a radius of 5 kilometers around each gas station
and count the number of competitors. I then compute the median number of competitors in
each state in each year and take the logged value. I also use the average fuel prices in each state
each year, as well as the length of the road network in a given state. Gasoline prices directly
affect the usage cost of combustion cars, and the size of the road network correlates with the
level of car ownership.

4.2 Identification

Using the set of instruments described above allows me to pin down the estimated parameters.
I recover the mean utility parameters β and the cost parameters ϕ through a linear projection.
Variation in market shares and observed characteristics then identify β. Market share variation
exists across states (the m part of the market index) and time (the t part of the market index). In
contrast, product characteristics mainly vary across time (except for the endogenous charging
station variable). The demand-side parameters, coupled with an assumption on firm behavior,
allow me to back out implied marginal costs. Changes in the implied marginal cost and ob-
served cost-shifters then identify the vector of marginal cost parameters ϕ. In addition to using
the instruments described above, variation in the observed characteristics helps identify σ. Sim-
ilarly, variation in market shares, prices, and consumer income identify the price coefficient α.
Prices vary across time, whereas consumer income varies both across time and across states.
The parameters (γ0, γ1) governing the marginal cost of range are identified from variation in
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observed range levels and the implied marginal cost of providing it, which, in turn, depends on
variation in prices and market shares. For a more elaborate discussion on the identification of
demand and supply models with differentiated products, refer to Berry and Haile (2014). The
key identifying assumption on the charging station side is that the gas station density only af-
fects charging station entry through the cumulative EV base (see Springel, 2021). Identification
would break down if gas station density grew with EV adoption in a given state. This is not the
case, however.

I estimate the car demand model, the car supply model, and the charging station entry model
separately. Appendix C describes the estimation procedure in more detail.

5 Results

The estimated coefficients of key parameters are in Table 2. The first three columns show
demand and supply estimates, and the last three columns show estimates from the charging
station entry equation. 26

Table 2: Key estimates

Demand/supply for cars Station entry

Coefficient SE Coefficient SE

Demand: Means
Range 2.274 (0.350) log(EV base) 0.707 (0.191)
Range x Trend -0.201 (0.034) National Subsidies 0.116 (0.021)
log(Charging Stations) 0.373 (0.079) Local Subsidies 0.022 (0.030)
Fuel Cost -0.564 (0.039)
BEV -10.037 (1.928)
PHEV -6.982 (1.824)

Demand: Obs. Heterogeneity
Price / Income -7.112 (0.648)

Demand: St. Dev.
BHEV 2.455 (0.891)
Range 0.326 (0.346)
Fuel Cost 0.267 (0.017)

Supply: Range provision
Intercept 1.124 (0.041)
Trend -0.095 (0.008)

Statistics
Mean own-price elasticity -4.043
Mean own-range elasticity (BEVs) 3.823
Mean markup (BEVs) 7.130

Note: Prices, subsidies deflated and in EUR 1,000. Vehicle class-, Body-, Firm-, Year- and State Fixed Effects
included on car demand- and supply side. Linear time trend and state demographics are included on the station
entry side. See Table A4 for the full demand and supply estimates.

26Appendix Table A3 reports first-stage regressions. Appendix Table A4 reports the full demand and marginal
cost estimates. Appendix Table D1 reports the results when assuming firms and charging stations move simul-
taneously. Appendix H presents results from an alternative specification with an interaction between range and
charging stations. Overall, the signs and magnitudes of the estimated coefficients are in line with standard eco-
nomic intuition. Note that the fixed effects I use in the charging entry equation soak up the effects of the gasoline
station density instrument. However, Appendix Table A5 shows that removing the instrument does not change the
estimates. I also consider lagged gas station density as an alternative to contemporaneous gas station density; the
results stay virtually the same. The results are in Appendix Table A7.
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Consumers like greater range, all else equal. The range-specific trend is negative, meaning
consumer preferences for range become less intense throughout the sample period. One ex-
planation is that range anxiety has decreased over time due to consumers learning more about
electric vehicles. Consumers learn from their own experience, their peers, or simply from a
greater availability of information on electric cars.27 The random coefficient on range suggests
that considerable heterogeneity exists in the valuation of range, even though this parameter is
estimated imprecisely. The positive and statistically significant sign on the Charging Station

variable implies that consumers prefer more charging stations, in line with previous studies on
demand for electric vehicles (Li, 2023; Springel, 2021). The mean range elasticity is equal to
3.823.

The average willingness to pay for range is AC 75, ranging from AC 102 in 2012 to AC 49 in
2018. However, these averages hide considerable heterogeneity. In 2018, the 90th percentile is
willing to pay AC 93 for range, and the most range-loving consumer is willing to pay AC 581.

All else equal, consumers strongly dislike both battery and plug-in hybrid electric vehicles,
even though there is considerable heterogeneity in the population. A small share of consumers
prefers electric cars over those with a combustion engine. The results suggest that the disutility
from purchasing EVs decreased over the sample period since the driving range and the number
of charging stations increased. This finding also underscores the importance of range and
charging stations for the mass adoption of EVs. Overall, consumers enjoy a lower utility from
EVs compared to combustion cars. However, this utility penalty decreases with a higher range
and a larger charging station network.

The negative and significant coefficient on price over income translates into a mean price
elasticity of -4.043, which falls within the range of figures found in the extensive literature on
demand estimation for new car markets. Appendix Table J1 shows how my estimated price
elasticity compares to other papers. Unlike the sensitivity of range, price sensitivity barely
changes over the sample period. Due to slightly larger and more dispersed household income,
mean price sensitivity dropped somewhat from 2012 to 2018, with the variance increasing
slightly. The relative stability of price sensitivity, together with the finding of a lower valuation
of range over time, suggests that towards the end of the sample period, consumers valued (a
lower) price more relative to range than at the beginning.

Table 2 also suggests that important indirect network effects exist on the EV demand and
the charging station entry side. To give an idea of the magnitude of the coefficients, I calcu-
lated the predicted increase in the number of charging stations in each state if there had been
an additional 1,000 EVs on the road in 2018. Such an increase in the EV base would have
led to between 28 and 141 new charging stations, depending on the state, with the median in-

27Research and consumer surveys suggest that the driving range of current battery-electric cars is sufficient for
most trips. Li, Linn, and Muehlegger (2014), for instance, report that households drive approximately 50 miles
per day on average. Another explanation may be that faster battery charging has made consumers less worried
about range. A further reason for the negative trend is that it captures decreasing marginal utility of range as the
range increases. Range has indeed increased, as evidenced in Figure 2.
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crease being 83 stations. Overall, these additional 1,000 EVs would have led to a further 1,272
charging stations. Note that there were 17,509 chargers and 197,176 EVs circulating in 2018.
In turn, these additional charging stations would increase the willingness to pay for EVs by
between AC 24-501, with the median increase being AC 140.28

Consumers dislike higher fuel costs, as evidenced by the negative parameter in the mean
utility. A dis-utility from higher driving costs makes sense, as these increase the overall cost
of using a car. However, consumers exhibit considerable heterogeneity in their valuation of
fuel costs. Heterogeneity in the valuation of fuel costs is also unsurprising, as factors such as
income, driving behavior, and preferences for less fuel-efficient cars play a role in shaping an
individual’s fuel cost valuation.
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Figure 3: Estimated yearly mean marginal cost of providing range

Vertical lines are 95% CIs

On the marginal cost side, I find that range is costly to provide. Range provision became
cheaper over the sample period, as evidenced by the trend’s negative and statistically significant
coefficient. This trend translates into a mean decrease in the marginal cost of providing range of
approximately 41% from 2012 to 2018 (see Figure 3). This number is comparable to estimates
of lithium-ion cell price decreases in (see Hsieh et al., 2019, for instance). In 2018, the average
marginal cost of providing an extra km of range was AC 114, ranging from AC 79 to AC 233.

The estimates of the range-specific marginal cost shock η are intuitive: Tesla models have
the lowest range-specific marginal cost shocks. Overall, there is a negative correlation between
the total range of a car and its range-specific marginal cost shock, with the correlation being
-.42. The mean value for η is -0.02, and its variance is .040.

Appendix Figure B3 plots marginal cost curves at different range levels for 2012 and 2018.
The lines are computed using the mean estimated baseline marginal cost across BEVs and the
mean estimated marginal cost of providing range for 2012 and 2018, respectively. The curve is
much flatter in 2018 than in 2012, when range levels higher than 250 km resulted in a marginal

28Note that the maximum increase in the willingness to pay occurs in a state that has a stock of around 1,300
EVs and 180 charging stations in 2018. The minimum increase occurred in a state that had a stock of around
39,000 EVs and 3,800 charging stations in 2018.
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cost above AC 50,000. The figure suggests that it was not feasible to provide many of the range
levels observed in 2018 at a competitive price.
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Figure 4: Per-kWh cost at observed range levels against battery pack cost

Battery pack cost estimates are taken from Steen et al. (2017). Values for 2018 are estimates. Per-kWh
costs are calculated by dividing the marginal cost of providing range by the battery efficiency.

To dig deeper into the validity of the marginal cost estimates, I translate the marginal cost
of providing range into a battery cost per kWh. Dividing the estimated mean marginal cost of
providing range by the battery efficiency, I obtain a cost per kWh. I then compare this per-kWh
translation of the marginal cost of providing range to the estimated costs of a battery pack, taken
from an engineering report (Steen et al., 2017). This report provides an estimate for the battery
pack cost in $ per kWh for the sample period considered, which I convert into euros and deflate.
The results are shown in Figure 4. We can see that the estimated per-kWh cost, evaluated at
observed range levels, is above the battery pack cost based on engineering estimates. This
finding makes sense, given that the battery pack’s size is the main but not the only determinant
of providing range. Additionally, the graph shows the per-kWh cost evaluated at observed
range levels and imputed marginal cost levels. Given the log-linear marginal cost specification,
this per-kWh cost would be different at different marginal cost and range levels. However,
apart from 2013-2014, the per-kWh cost backed out of the model follows a similar trend to the
battery pack estimate, providing evidence that my marginal cost estimates are reasonable.

The baseline marginal cost estimates have the expected signs and magnitudes. Larger,
heavier, more powerful, and more fuel-efficient cars are more costly to produce. Battery electric
vehicles are cheaper to produce, all else equal, which is reasonable given that apart from the
costly range provision, there are many parts (gearbox, exhaust pipe, starter, injection system,
etc.) that are not necessary for the production of a BEV. The supply-side results suggest that
range provision accounts for approximately 25% of the marginal cost of producing a BEV, on
average. This finding is in line with recent engineering cost estimates (Lutsey and Nicholas,
2019), further suggesting that my marginal cost estimates are reasonable in magnitude.
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The role of network effects

Table 3: Mean own-and cross-price elasticities of selected BEVs in 2018

i3 Soul i.MiEV Leaf Golf up. markup

With indirect network effects
i3 -3.9437 -0.0616 -0.0671 -0.0598 -0.0611 -0.0677 7,622
Soul -0.0332 -3.5770 -0.0245 -0.0273 -0.0290 -0.0255 6,537
i.MiEV -0.0004 -0.0004 -2.9688 -0.0004 -0.0004 -0.0004 5,956
Leaf -0.0305 -0.0284 -0.0306 -3.6190 -0.0284 -0.0310 6,862
Golf -0.0775 -0.0741 -0.0772 -0.0727 -3.6287 -0.0777 7,431
up. -0.0133 -0.0127 -0.0125 -0.0127 -0.0127 -2.8991 6,204

Without indirect network effects
i3 -3.8480 0.0351 0.0299 0.0365 0.0348 0.0292 8,391
Soul 0.0143 -3.5306 0.0232 0.0204 0.0184 0.0222 7,213
i.MiEV 0.0001 0.0001 -2.9683 0.0001 0.0001 0.0001 6,433
Leaf 0.0197 0.0221 0.0201 -3.5688 0.0216 0.0196 7,318
Golf 0.0352 0.0391 0.0364 0.0401 -3.5164 0.0357 8,046
up. 0.0036 0.0042 0.0045 0.0042 0.0041 -2.8821 6,927

Note: Upper half of table shows elasticities taking indirect network effects into account, lower half of table shows
elasticities when ignoring indirect network effects.

Table 2 suggests the presence of strong indirect network effects on both the EV demand- and
the charging station entry side. We saw in Section 3.4 that indirect network effects alter the
market share derivatives with respect to price and range and, hence, the price and range elastic-
ities. Through their influence on pricing decisions, indirect network effects also affect markups.
Shutting down indirect network effects in firm choices would lead to markups that would be 8%
higher on average. Table 3 shows the effect of indirect network effects on own-and cross-price
elasticities as well as on markups of selected BEVs in 2018. We see that the own-price elas-
ticities are larger when firms take into account indirect network effects. Moreover, cross-price
elasticities become negative, meaning that BEVs act as complements: Increasing the price of
a BEV will lead to lower sales of rival BEVs. We can also see that markups are substantially
lower. For instance, the markup of the Nissan Leaf is estimated to be around AC450 lower when
taking into account indirect network effects. Note that indirect network effects also accrue to
PHEVs, whose markups would be 5.5% higher without indirect network effects.

We can see similar patterns in Table 4, which shows own-and cross-range elasticities. When
firms take into account indirect network effects, own-range elasticities increase, and the sign of
cross-range elasticities flips from negative to positive, again meaning that BEVs act as comple-
ments.
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Table 4: Mean own-and cross-range elasticities of selected BEVs in 2018

i3 Soul i.MiEV Leaf Golf up.

With indirect network effects
i3 2.5400 0.0347 0.0416 0.0326 0.0344 0.0423
Soul 0.0263 3.2762 0.0250 0.0240 0.0250 0.0256
i.MiEV 0.0002 0.0002 1.8048 0.0002 0.0002 0.0002
Leaf 0.0281 0.0265 0.0313 3.8281 0.0266 0.0319
Golf 0.0571 0.0555 0.0624 0.0534 3.0182 0.0632
up. 0.0065 0.0063 0.0065 0.0062 0.0063 1.5976

Without indirect network effects
i3 2.4783 -0.0277 -0.0209 -0.0295 -0.0275 -0.0202
Soul -0.0132 3.2375 -0.0147 -0.0156 -0.0144 -0.0141
i.MiEV -0.0001 -0.0001 1.8045 -0.0001 -0.0001 -0.0001
Leaf -0.0228 -0.0248 -0.0201 3.7770 -0.0242 -0.0195
Golf -0.0341 -0.0361 -0.0296 -0.0380 2.9272 -0.0287
up. -0.0026 -0.0029 -0.0027 -0.0029 -0.0028 1.5884

Note: Upper half of table shows elasticities taking indirect network effects into account, lower half of table shows
elasticities when ignoring indirect network effects.

6 Counterfactuals

In this section, I use the estimated model to quantify the effect of subsidies on battery electric
vehicles by performing several counterfactual exercises. In a first step, I analyze how firms
adjust price and range in response to subsidies and how indirect network effects impact these
adjustments. In a second step, I assess the subsidy scheme imposed in Germany. Finally, I
evaluate different subsidy schemes and compare them in terms of market outcomes. This step
allows me to describe how subsidy design affects policy objectives and the underlying substi-
tution patterns. It also allows a discussion on the compatibility of different policy objectives.
In Appendix G, I also look at the impact of indirect network effects on price and range choices
as well as market outcomes. I perform all counterfactuals for 2018. Appendix F gives details
on the counterfactual procedure.

6.1 The impact of subsidies on pricing, range choices, and charging sta-
tion entry

In this subsection, I evaluate the effect of the German support scheme. The scheme consisted
of a AC 2,000 purchase subsidy for BEVs introduced in 2016 and an AC 8,000 subsidy for the
installation and connection of a public charging station introduced in 2017. The explicit goal
was to increase EV sales to have 1 million electric cars on the streets by 2020 and 6 million by
2030. In this section, I quantify the impact of introducing this support scheme by re-computing
the market equilibrium in 2018 without the scheme. To look at the relative importance of
purchase- and charging station subsidies, I also consider scenarios where I either remove the
purchase subsidy only or the charging station subsidy only.29

29In all scenarios, I leave the subsidies for PHEVs unchanged. Likewise, I leave any state-level subsidies in
place.
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Table 5: Analysis of price and range adjustments

No BEV subsidy No station subsidy Neither subsidy

Observed Price adjusts Price + Range adjust Full feedback loop

Price 34,782 +2,263 +11,199 +11,243 -1,302 +11,283
(+2,203, +2,321) (+3,645, +17,945) (+3,610, +18,140) (-1,846, +7,116) (+3,689, +18,269)

Range 259 0 +34 +34 -7 +34
(+15, +52) (+15, +53) (-14, +25) (+16, +53)

MC 21,774 0 +5,466 +5,495 -873 +5,502
(+831, +10,094) (+855, +10,096) (-1,333, +4,319) (+903, +10,253)

Markup 7,361 +314 +2,357 +2,366 -221 +2,392
(+264, +363) (+551, +3,414) (+562, +3,429) (-251, +1,574) (+582, +3,468)

Sales 34,761 -7,604 -10,189 -10,569 -6,399 -14,904
(-8,051, -7,043) (-11,760, -6,939) (-12,928, -6,100) (-9,019, -2,886) (-16,205, -11,356)

Stations 17,509 0 0 -712 -7,942 -7,947
(-3,504, +3,994) (-7,949, -6,856) (-7,949, -6,982)

Government spending 130.604 -67 -67 -73 -76 -131
(-67, -67) (-67, -67) (-95, -35) (-83, -71)

Consumer Surplus 49,250 -66 -71 -81 -155 -213
(-3,073, +4,061) (-3,054, +4,065) (-3,076, +4,037) (-3,123, +3,938) (-3,161, +3,886)

CO2 emissions 5,192,205 +3,426 +4,489 +4,667 +3,180 +6,955
(+2,830, +4,005) (+2,483, +5,173) (+2,290, +5,868) (+968, +5,645) (+4,247, +9,053)

Note: Table gives differences to observed outcomes with 90% C.I. in parentheses. Prices, range levels, marginal
costs, markups, and sales are mean values across BEVs.

I run additional scenarios to explore how firms strategically adjust price and range in re-
sponse to subsidies and how these choices interact with each other and with station entry. To
do so, I run a counterfactual in which firms only adjust prices, leaving range choices and charg-
ing station entry fixed. I also run a counterfactual where firms adjust both price and range,
leaving charging station entry fixed.

Table 5 shows the counterfactual results. Columns 3-5 show the impacts of removing pur-
chase subsidies while allowing for only price adjustment (column 3), price and range adjust-
ment (column 4), and price, range, and station entry adjustments (column 5). Column 6 shows
the impact of removing the charging station entry subsidy, and column 7 shows the outcome
when all subsidies are removed.

When firms can only adjust prices, they slightly overshift the subsidy, with the median pass-
through rate being around 118%. If firms can adjust prices and the EV range, the subsidy leads
to a substantially larger price decrease but also a substantial range decrease.30 The median
price decrease is AC 5,181, and the median range decrease is 19km; the large mean decrease
is driven by two models that reduce range substantially in response to the subsidy.31 Range
adjustments explain this median price reduction that is 2.5 times larger than the subsidy. Firms

30In Appendix K I show that the direction of firms’ price and range reactions is unclear a priori. Among other
things, the direction depends on the price and range semi-elasticities as well as the marginal cost of providing
range. Gaudin (2024) shows that the direction of such strategic reactions is ambiguous even in simpler models
assuming symmetry and single-product firms.

31Note that the price changes shown here are final consumer prices where the subsidy has been subtracted.
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reduce the EV range, which reduces the marginal cost of cars. Why do firms reduce range in
response to the subsidy? The subsidy makes EVs cheaper, which makes them more attractive
to more price-sensitive consumers with a lower willingness to pay for range. This, in turn,
gives firms incentives to reduce the price further by reducing range, which lowers the marginal
cost of producing the car. Firms pass on this marginal cost decrease to consumers. Defining a
pass-through rate when firms can adjust attributes is tricky. I define an implicit pass-through
rate as ∆p

∆mc∗(1+vat)+λ
, where ∆p is the consumer price difference pre- to post-subsidy, ∆mc the

change in marginal cost (augmented by the value-added tax rate), and λ is the subsidy. The
average implicit pass-through rate is around 119%, almost exactly what the pass-through rate
is when firms only adjust prices. In total, the subsidy leads to cheaper, lower-range EVs on
the market, and car makers collect a lower markup on them. Selling cheap, low-range BEVs
increases substitution from the outside option and decreases cannibalization on higher-margin
combustion cars, making this strategy profitable for firms when facing flat subsidies. Overall,
the price and range changes that my counterfactuals predict are in line with the reduced-form
evidence I presented in Table 1.

Appendix Figure B4 shows that the direction of price and range effects goes into the same
direction for all subsidized BEVs. The only BEV whose price and range increase in response
to the subsidy is Tesla’s Model S, which did not qualify for the subsidy. Appendix Figure
B5 breaks down the price changes in response to removing the purchase subsidy (the Figure
corresponds to column 4 in Table 5). The Figure underscores the fact that most price changes
are around AC 5,000 and that marginal cost changes due to range adjustments explain most of
the discrepancy between the price increase and the subsidy amount.

These cheaper, lower-range EVs generate more sales: an additional 2,400 sales compared
to when firms can only adjust prices. It is noteworthy that taking into account indirect network
effects increases the price and range adjustments, but not by much. Purchase subsidy drives the
price and range adjustments. The most important effect of the EV/charging station feedback
loops is on charging station exit, consumer surplus, and CO2 emissions: the subsidy increases
EV sales, which induces entry of charging stations, which in turn increases EV sales further.
Consumer surplus increases by around 14% when accounting for indirect network effects (even
though there is uncertainty about the sign of the effect), and CO2 emissions decrease by a
further 4%.

In terms of policy outcomes, rows 5-8 reveal that EV sales rose by 75% and station entry
rose by around 83% due to the support scheme. Consumer surplus increased by around AC 213
million, whereas the scheme cost AC 130 million. Removing both subsidies amplifies indirect
network effects: Removing the purchase subsidy leads to lower charging station entry. Like-
wise, removing the charging station subsidy leads to lower BEV sales, even though the loss
in sales is lower than when the purchase subsidy is removed. Removing the charging station
subsidy would lower consumer surplus substantially more than removing the purchase subsidy.
One reason for this result is that the charging station subsidy generates strong feedback loops
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without causing large adjustments in BEV price and range levels. As a result, consumers enjoy
both high range and a large charging station network.

The counterfactuals reveal that charging station subsidies generate 10 times the charging
station entry, 60% of the EV sales, and 90% higher consumer surplus at almost the exact cost
to taxpayers. Do charging station subsidies provide more bang for the buck? The exercise
above does not hold subsidy spending constant. Spending on station subsidies was higher than
spending on purchase subsidies. To really assess the effectiveness of the different subsidies,
we should compare the schemes holding expenditure levels constant, which is what I do in the
next step.

6.2 Designing EV subsidy schemes

In this section, I investigate the effectiveness of different subsidy schemes in more detail. To
do so, I allow for different levels of purchase and charging station subsidies at constant budget
levels. I consider different combinations of λ ≡ (λ1, λ2, λ3), where λ1 is the flat part of the
purchase subsidy, λ2 is the range-based part of the purchase subsidy, and λ3 is the charging
station subsidy. The purchase subsidy for a BEV with range rj is then λj = λ1 + λ2rj .32 I
allow purchase subsidies to depend on the range because policymakers in some countries use
attribute-based subsidies (Rokadiya and Yang, 2019). Doing so also gives the policymaker the
choice between subsidizing two attributes that enhance BEV quality, creating an interesting
choice between directly incentivizing range provision and steering consumers towards higher-
range cars and incentivizing charging station entry, which will benefit all BEVs equally.

I focus on three outcomes in this section: First, I look at CO2 emissions from new car
sales, as the ultimate goal of subsidizing BEVs is to decarbonize the transport sector. Second,
I focus on EV sales. Many governments have introduced explicit sales targets for electric
vehicles. A diffusion-maximizing approach ensures the achievement of these sales targets. In
addition, a strategy focusing on maximizing diffusion can also be a static approximation to a
dynamic optimization problem: A policymaker quickly wants to move along a learning curve.
A diffusion-maximizing strategy can do well in approximating the desire to move along the
learning curve swiftly in the early phase of adoption. Third, I look at consumer surplus as well
as total surplus. When calculating total surplus, I take into account the social cost of carbon,
which I assume to be AC75/t.

In Table 6, I present the schemes that maximize different policy objectives, as well as
the observed scheme (λ = (2, 0, 8)).33 Different schemes maximize different policy objec-
tives. By increasing the (flat) purchase subsidy and decreasing the charging station subsidy,
the policymaker can maximize BEV sales. A similar scheme with slightly more weight on
station subsidies minimizes CO2 emissions from new car sales. By shifting weight on sub-

32I use a grid search approach to find the impact of different schemes (λ1, λ2, λ3) while holding subsidy spend-
ing constant at its 2018 level. Appendix F.2 presents further details.

33Appendix Table D2 reports the results when assuming firms and charging stations move simultaneously.
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Table 6: Comparison of subsidy schemes

Scheme Price Range Sales Stations CO2 CS TS

(0, 0, 0) 44,059 293 19,854 9,562 5,199,163 43,325 65,476

(2, 0, 8) -11,278 -34 +14,907 +7,947 -6,958 +153 +241

(1.25, 0.2, 8.55) -6,414 -15 +12,215 +8,971 -5,841 +154 +239

(3, 0, 5.55) -14,948 -50 +18,005 +3,699 -7,951 +135 +216

(3.25, 0, 4.5) -15,555 -52 +18,230 +2,284 -7,920 +127 +202

Note: Table shows differences with respect to scenario without any subsidies. Prices, range levels, and sales are
mean values across BEVs.

sidizing charging stations, the policymaker can maximize consumer surplus. It turns out that
the actual subsidy scheme maximized total surplus, which is mainly driven by carmaker profits
being maximized with the observed scheme. Schemes that employ purchase subsidies lead to
strong price and range reactions by firms. Consumer surplus maximization requires a scheme
causing small price and range reactions by firms and a large amount of charging station en-
try, which happens when charging stations are the primary recipient of subsidies. Under the
scheme λ = (1.25, 0, 8.55), over 70% of the budget is spent on charging station subsidies. In
that case, fewer consumers buy a BEV, but the BEVs sold have a high range and profit from a
large charging station network.34 These results are in line with findings by Jia Barwick et al.
(2024), who study a Chinese subsidy design and also find that attribute-based subsidies lead
to a higher range. The results also concur with Springel (2021), who finds that using both
purchase and station subsidies maximizes EV adoption in the case of Norway.

Table 7 reports substitution patterns across the different schemes. Columns 2 and 3 report
where substitution comes from, and columns 4 and 5 report where substitution goes to. Note
that since PHEVs also benefit from a larger charging station network, their sales numbers also
increase. We can see that between 72% and 75% of the substitution towards EVs comes from
the outside option, meaning that the new car market expands overall. Substitution from the out-
side option can come from consumers who otherwise would have bought a used car (enhancing
the subsidy scheme’s environmental benefits by removing dirty vehicles from the market) or
consumers who would not have bought a car at all (unintentionally expanding car usage, local
pollution, and road congestion). This table also explains why the scheme λ = (3, 0, 5.55) min-
imizes CO2 emissions from new car sales. Doing so requires two conditions to be met: First, a
large part of the substitution towards EVs should go towards BEVs. Second, minimizing CO2
emissions entails a trade-off between generating as much substitution from combustion cars
as possible on the one hand and generating substitution from very polluting cars on the other
hand. While schemes causing less price and range adjustments generate both the largest amount

34The environmental benefits from mainly subsidizing charging stations may be understated to the extent that a
higher range and a larger charging station network may induce consumers who own both an EV and a combustion
car to drive the EV more and the combustion car less (Sinyashin, 2021). Also, shifting subsidy spending towards
charging stations leads to a larger ratio of public chargers to EVs, alleviating congestion concerns from having too
many EVs per charger.
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Table 7: Substitution patterns across subsidy schemes

Scheme Substitution from Substitution to

Scheme ICE Outside option BEV PHEV

(2, 0, 8) 5,339 14,174 14,907 4,605

(1.25, 0.2, 8.55) 4,877 12,654 12,215 5,316

(3, 0, 5.55) 5,085 14,852 18,005 1,931

(3.25, 0, 4.5) 4,763 14,399 18,230 932

Note: The Table shows how many consumers substituted away from combustion cars (ICE) and outside options
and how many substituted towards BEVs and PHEVs, compared to the scenario without any subsidies.

of substitution from combustion cars and also generate substitution from more polluting cars,
these schemes generate substantial substitution towards PHEVs that are not zero-emission,
which is why they do not minimize CO2 emissions from new car sales. The observed scheme
λ = (2, 0, 8) generates more substitution from combustion cars than the emission-minimizing
one. However, the observed scheme generates more substitution towards PHEVs.

This section shows that policymakers face a trade-off between maximizing BEV sales, min-
imizing CO2 emissions from new car sales, and maximizing consumer and total surplus. Firms’
strategic price and range reactions to subsidies drive this trade-off, underscoring the need for
policymakers to carefully study firm responses to subsidies when trying to achieve specific
policy goals.

7 Conclusion

In this paper, I study subsidy design in the presence of adjustable product attributes and indirect
network effects. In particular, I analyze how indirect network effects affect price and range
decisions of EV producers and how subsidies affect EV prices and range, charging station
entry, and policy outcomes.

I develop a structural model of endogenous product attribute choice in the presence of
indirect network effects and estimate it using a novel data set on state-level new car sales
in Germany. On the demand side, consumers choose between differentiated cars of different
engine types. The demand side allows for flexible substitution patterns that are key to evaluating
how purchase subsidies affect car choices. On the car supply side, firms make endogenous price
and EV range choices, allowing me to study their interaction with indirect network effects
and subsidies. The charging station entry side links the number of charging stations to the
cumulative EV base and the level of charging station subsidies. The model allows me to study
how indirect network effects interact with endogenous price and range decisions and how these
decisions affect the policy objectives of EV subsidy programs.

I find important indirect network effects both on the EV demand and on the charging entry
side. As a result, own-price elasticities are larger in absolute value when taking indirect network
effects into account. Indirect network effects lower EV markups by around 6% on average.
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Indirect network effects lead to positive cross-price and negative cross-range elasticities, which
has important implications for the price and range choices of EV producers. I also find that
consumers have strong preferences for range, which is costly to provide. On the supply side, I
find that the marginal cost of providing range decreased by around 41% from 2012 to 2018.

I analyze a German program for purchase and charging station subsidies. I find that this
program doubled EV sales but caused strong price and range adjustments. The program led
to cheaper, lower-range EVs on which firms collected a lower markup. I find that removing
the charging station subsidy would decrease EV sales by 18% and charging stations by 46%.
Alternatively, eliminating purchase subsidies would decrease EV sales by 30% and charging
stations by 4%.

To comprehensively analyze subsidy design, I allow for range-based purchase subsidies and
enable the policymaker to freely choose the amount of flat and range-based purchase subsidies
and charging station subsidies while holding the budget constant at the observed subsidy cost in
2018. I find that the policymaker faces a trade-off between maximizing EV sales, maximizing
consumer surplus, maximizing total surplus, and minimizing annual CO2 emissions from new
cars. Whereas a large flat purchase subsidy maximizes EV sales at a lower range and prices,
consumers prefer the vast majority of the budget to be spent on charging subsidies. A high
purchase subsidy coupled with a low charging subsidy minimizes CO2 emissions from new car
sales. The observed subsidy scheme maximizes total surplus.

These results have important implications for policymakers. It is crucial to understand
strategic firm reactions generated by different subsidy schemes, as they can lead to stark price
and range adjustments. These adjustments will drive substitution patterns between EVs and
combustion cars, which in turn will shape the policy outcomes of subsidies. In particular, EV
sales targets or outright maximization of EV sales can trigger unintended consequences in the
form of price and range adjustments.

My paper leaves scope for future work. First, I do not directly explore dynamic incentives
that may exist due to learning effects. Second, there exists a dynamic angle to the chicken-
and-egg problem: Charging station providers and firms may wait on one another to enter the
market, stalling the development of the EV industry in the absence of coordination or some
other kind of intervention.
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Online Appendix

A Additional Tables

Table A1: Summary statistics

Mean values of key characteristics

Variable 2012 2013 2014 2015 2016 2017 2018

BEV
Price 30,575 31,383 35,491 32,569 37,105 37,200 34,671
Quality (Range in km) 168 173 202 196 213 246 259
Fuel Cost 4.03 4.35 4.39 4.19 4.24 4.28 4.21
Acceleration 2.80 2.98 3.19 2.96 3.31 3.26 2.94
Weight 1,581 1,662 1,797 1,797 1,867 1,902 1,841
Footprint 6.01 6.40 6.78 6.78 7.03 7.13 6.97
Doors 4.50 4.70 4.85 4.85 4.86 4.88 4.89
Number of Products 6 10 13 13 14 16 18
Sales 2,100 5,517 9,044 13,234 12,201 25,593 34,629

PHEV
Price 43,409 48,607 44,389 56,007 57,479 54,651 57,126

Quality (Range in km) 54 53 52 44 40 45 45
Fuel Cost 5.31 5.66 5.78 5.77 5.57 5.58 5.89
Acceleration 4.58 5.16 5.02 5.81 5.82 5.81 5.95
Weight 1,988 2,160 2,143 2,408 2,476 2,425 2,449
Footprint 7.93 8.17 8.04 8.53 8.66 8.66 8.74
Doors 5 5 5 5 4.87 4.86 4.79
Number of Products 2 3 6 11 15 22 24
Sales 1,148 1,079 2,671 8,248 10,614 25,374 25,841

ICE
Price 32,673 32,965 34,008 33,881 34,653 33,669 33,652
Quality (Range in km) 995 1,018 1,039 1,057 1,063 1,023 997
Fuel Cost 10.09 9.34 8.65 7.60 6.98 7.47 8.01
Acceleration 5.29 5.32 5.41 5.44 5.62 5.76 5.74
Weight 2,023 2,035 2,044 2,043 2,031 2,008 2,017
Footprint 8.00 8.04 8.07 8.08 8.10 8.09 8.12
Doors 4.43 4.48 4.52 4.55 4.52 4.58 4.63
Number of Products 233 233 227 222 214 213 215
Sales 2,739,581 2,569,876 2,651,415 2,767,185 2,855,922 2,864,409 2,819,762

Stations
Number of Charging Stations 1,169 1,461 2,104 3,326 5,638 9,560 17,509

Note: This table shows average values of key characteristics, the number of products available, and total sales,
broken up by engine type. The last row holds the cumulative number of charging stations.
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Table A2: Charging station entry

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Charging stations
Total 1,169 1,461 2,104 3,326 5,638 9,560 17,509 27,098 36,439 42,373
Level 2 1,165 1,457 2,080 3,193 5,194 8,562 15,717 24,122 31,822 35,277
Level 3 4 4 24 133 444 998 1,792 2,976 4,617 7,096
Pct Level 2 0.997 0.997 0.989 0.96 0.921 0.896 0.898 0.89 0.873 0.833

Note: This table shows cumulative numbers of charging stations. The second and third lines break this up
between Level 2 and Level 3 chargers, and the fourth row shows the share of Level 2 chargers among the
number of chargers installed.

Table A3: First Stage Estimates

Price Range Range x Trend Stations

Coefficient SE Coefficient SE Coefficient SE Coefficient SE

Exogenous Charac.
Fuel Cost -0.795 (0.027) 0.010 (0.001) 0.045 (0.003) 0.007 (0.002)
Footprint 8.999 (0.096) 0.040 (0.002) 0.189 (0.010) 0.018 (0.005)
Acceleration 3.704 (0.046) -0.017 (0.001) -0.088 (0.005) -0.005 (0.002)
Doors 0.246 (0.066) -0.012 (0.001) -0.066 (0.005) -0.002 (0.003)
BEV 13.625 (1.709) 0.197 (0.097) -3.245 (0.477) 4.298 (0.254)
PHEV 13.801 (1.870) -0.694 (0.094) -4.423 (0.479) 5.012 (0.310)
Own State 2.386 (0.366) 0.002 (0.011) -0.015 (0.060) 0.240 (0.026)

PHEV
Range x PHEV -4.815 (1.334) 0.004 (0.000) 0.021 (0.002) 0.004 (0.001)
Range x PHEV x Trend -1.094 (0.331) 2.112 (0.095) 15.758 (0.828) -0.204 (0.422)

Cost shifters
Station Subsidies 0.241 (0.077) -0.259 (0.019) -3.560 (0.149) -0.004 (0.071)
Steel x Volume 2.237 (0.107) -0.009 (0.005) -0.104 (0.033) 0.085 (0.012)
GMY x-rate 4.171 (0.146) -0.042 (0.003) -0.183 (0.016) -0.019 (0.008)
LI price x Volume -0.001 (0.000) 0.012 (0.003) 0.024 (0.016) -0.026 (0.011)
LI x-rate x Volume 0.327 (0.105) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Differentiation IVs
BEV count-local-own -1.388 (0.338) 0.155 (0.008) 0.725 (0.044) 0.041 (0.016)
Range index quadratic-own -4.788 (0.576) -0.055 (0.024) 0.114 (0.140) 0.050 (0.049)
Range index quadratic-rival -2.372 (0.396) -0.031 (0.047) 1.328 (0.278) 0.187 (0.101)
Footprint-local-own 17.023 (1.158) 0.231 (0.024) 2.494 (0.137) 0.244 (0.057)
Footprint-local-rival -3.876 (0.316) 0.874 (0.042) 4.264 (0.229) 0.223 (0.124)
Price-local-own -32.094 (1.019) -0.025 (0.007) -0.001 (0.032) 0.002 (0.017)
Price-quadratic-own 0.146 (0.006) -0.647 (0.035) -3.153 (0.189) -0.183 (0.100)
Fuel efficiency-quadratic-own -0.905 (0.667) -0.001 (0.000) -0.004 (0.001) 0.000 (0.000)
Fuel efficiency-quadratic-rival 0.138 (0.126) -0.225 (0.019) -1.228 (0.099) -0.083 (0.037)
Weight-local-rival -8.483 (0.310) 0.008 (0.001) 0.049 (0.006) -0.004 (0.003)

Firm FE X X X X
Class FE X X X X
Body FE X X X X
State FE X X X X
Year FE X X X X
SW F-Stat 180.683 89.668 41.42 41.582
Observations 28,288 28,288 28,288 28,288

Note:
makecell[l]This table presents first-stage estimates for each of the endogenous characteristics. The Sanderson-Windmeijer multivariate
F-test is reported for each endogenous variable.
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Table A4: Demand and marginal cost estimates

Utility Marginal Cost

Coefficient Rob. SE Coefficient Rob. SE

Mean Utility
Intercept -9.396 (0.377) Intercept 1.124 (0.041)
Range 2.274 (0.35) Trend -0.095 (0.008)
Range x Trend -0.201 (0.034)
Stations 0.373 (0.079) Intercept 1.595 (0.150)
Fuel Cost -0.564 (0.039) Weight 0.252 (0.044)
Footprint 0.708 (0.055) Fuel Efficiency -0.035 (0.006)
Acceleration 0.376 (0.026) KW 0.005 (0.000)
Doors -0.200 (0.027) Footprint 0.079 (0.023)
BEV -10.037 (1.928) BEV -0.946 (0.055)
PHEV -6.982 (1.824) PHEV 0.196 (0.026)
Own State 1.059 (0.076)
2013 -0.706 (0.040) 2013 -0.006 (0.013)
2014 -0.889 (0.042) 2014 -0.023 (0.014)
2015 -1.326 (0.058) 2015 -0.058 (0.015)
2016 -1.212 (0.061) 2016 -0.061 (0.015)
2017 -1.186 (0.058) 2017 -0.066 (0.015)
2018 -1.262 (0.060) 2018 -0.088 (0.015)

Obs. Heterogeneity
Price / Income -7.112 (0.648)

Standard Dev.
BHEV 2.455 (0.891)
Range 0.326 (0.346)
Fuel Cost 0.267 (0.017)

Note: Prices deflated and in EUR 1,000. Vehicle class-, Body-, Firm-, Year- and State
Fixed Effects included.

Table A5: Station entry estimation: Robustness checks

OLS IV IV IV IV IV

Log(EV base) 0.593 0.490 0.586 0.686 0.706 0.707
(0.079) (0.178) (0.222) (1.508) (0.191) (0.191)

Subsidies national 0.122 0.141 0.123 0.111 0.116 0.116
(0.025) (0.022) (0.033) (0.061) (0.021) (0.021)

Subsidies local 0.004 0.026 0.005 -0.016 0.022 0.022
(0.042) (0.059) (0.063) (0.043) (0.030) (0.030)

R-squared 0.926 0.924 0.925 0.925 0.859 0.859
First stage

F-stat 23.851 24.273 417.734 124.79 111.214
p-value 0 0 0 0 0
R-squared 0.840 0.834 0.990 0.917 0.917

Instruments
Gas station density X X X X
Gas prices X X X X
Road network X X X X X

Controls
County FE X X X X
Time trend X X X
State controls X X

Note: This table shows different specifications for the station entry equation, along with
the OLS estimate in the first column.
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Table A6: Station entry: First Stage

Dependent variable:

Log(EV Base)

Subsidies national −0.037 (0.021)
Subsidies local 0.018 (0.022)
Gas station density −0.033 (0.588)
Road network length 2.725 (0.500)
Gasoline price 0.803 (0.196)

Observations 112
R2 0.917
F Statistic 111.214

Note: NA

Note:
This table reports the first stage for the specification used
in the paper (last column of Table A5.

Table A7: Station entry estimation: Using lagged station density

OLS IV IV IV IV IV

Log(EV base) 0.593 0.456 0.511 -0.31 0.706 0.707
(0.079) (0.171) (0.207) (0.978) (0.192) (0.192)

Subsidies national 0.122 0.147 0.137 0.076 0.116 0.116
(0.025) (0.028) (0.035) (0.046) (0.021) (0.021)

Subsidies local 0.004 0.033 0.021 -0.018 0.022 0.022
(0.042) (0.058) (0.063) (0.043) (0.03) (0.03)

R-squared 0.926 0.922 0.924 0.939 0.859 0.859
First stage

F-stat 24.999 25.313 427.436 123.261 109.864
p-value 0 0 0 0 0
R-squared 0.846 0.839 0.991 0.916 0.916

Instruments
Lagged gas station density X X X X
Gas prices X X X X
Road network X X X X X

Controls
County FE X X X X
Time trend X X X
State controls X X
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Figure B1: Price and range evolution over time

These tables show price and range for each BEV in the sample for each year.
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Figure B2: Evolution of selected attributes over time

Note that the Ford Focus was not offered in 2016
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This figure plots hypothetical marginal costs at different range levels in 2012 and 2018.
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C Estimation details

C.1 Zero market shares
Approximately 4% of my observations are products with strictly positive national-level sales
but zero state-level sales. Zero sales pose a problem in random coefficient demand models, as
the estimation procedure is not well defined when zero sales are present. Deleting observations
with zero sales from the sample is problematic because it alters the market structure and makes
these products unavailable in counterfactual analyses. There exist approaches in the literature
to accommodate zero sales in random coefficient demand models.35 I follow D’Haultfœuille,
Durrmeyer, and Février (2019) and use a simple correction of state-level market shares:

scjm =
qobsjm + 0.5

Mm

,

where qobsjm is the observed quantity sold of product j in a given market and Mm is the market
size in that market. This correction aims to minimize the bias of log(sjm) such that demand
parameters can be consistently estimated. D’Haultfœuille et al. (2019) provide an interesting
and detailed discussion on this. The zero sales problem is rather small in my sample, given
that it only affects approximately 4% of my observations. My results are robust to the use of
different corrections (such as replacing qjm = 0 with qjm = 1, see Appendix I), which I see as
evidence that my demand parameters are consistently estimated and lead me to believe that the
correction I use is sufficient.

C.2 Estimation of the car demand side
On the demand side, the vector of parameters to be estimated is given by θd ≡ (βx

i , β
r, α).

I allow for random coefficients on characteristics for which I believe consumer heterogeneity
matters: the driving range, an EV dummy for battery- and plug-in hybrid vehicles and Fuel
Cost, measured in AC /100 km. The random coefficient on range allows for flexible substitution
patterns between EVs with different range levels. The random coefficient on the EV dummy al-
lows for flexible substitution between electric cars and combustion engine cars. Obtaining such
flexible substitution patterns is crucial for studying the market outcomes of subsidy schemes,
as substitution between EVs with different range levels and across engine types drives these
outcomes. The random coefficient on Fuel Cost allows consumers to have idiosyncratic pref-
erences for a characteristic that proxies the usage cost of cars. Additionally, substantial dif-
ferences across engine types exist in the fuel cost per 100 km, which renders the substitution
patterns between cars of different engine types more flexible. I include a trend in the mean
taste for range, possibly capturing taste changes for range over time. In addition, I add several
characteristics for which I only estimate the mean taste, including the number of public charg-
ing stations per 10,000 inhabitants, fuel cost, footprint, doors, dummies for electric vehicles,
a linear time trend, and a dummy if the firm has its headquarters in the state considered.36 I

35Li (2023) uses a Bayesian shrinkage estimator to move market shares away from zero. Gandhi, Lu, and Shi
(2022) construct bounds for the conditional expectation of inverse demand and show that their approach works
well even when the fraction of zero sales is 95%. Dubé, Hortaçsu, and Joo (2021) use a pairwise-differencing
approach to estimate demand parameters.

36I introduce the last variable to account for the fact that car companies often register a large number of cars in
their home state. Firms do so to comply with emissions regulations or to sell these cars at a discount later. Not
accounting for this may introduce a bias, especially for products with small market shares.
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also add brand, class, body, and state–fixed effects. All remaining unexplained variation is then
collected in ξjmt, which is interacted with the instruments described in the previous section to
build moment conditions of the form E[zdjmtξjmt] = 0, with zdjmt as an instrument. Stacking
ξjmt across products and markets into a column vector ξ, I obtain the GMM objective function
to be minimized:

min
θd

ξ(θd)
′ZdW dZd′ξ(θd),

whereZd contains the instruments andW d is a positive definite weighting matrix. I use the two-
step efficient GMM estimator, where I use an approximation of the optimal weighting matrix
based on an initial set of estimates to recover the final estimated vector of parameters. The
estimation algorithm that I use is described in detail in Berry et al. (1995) and Nevo (2001). In
the estimation, I account for various numerical issues that recent literature has drawn attention
to (Dubé, Fox, and Su (2012), Knittel and Metaxoglou (2014), Brunner, Heiss, Romahn, and
Weiser (2025), Conlon and Gortmaker (2020)). First, I approximate the market share integral
with 1,000 draws using modified Latin hypercube sampling. Hess, Train, and Polak (2006)
and Brunner et al. (2025) show that this method performs very well in random coefficient logit
models and provides better coverage than the more frequently used Halton sequences. Second,
I set the tolerance level in the contraction mapping of the inner loop to 1e-14 to solve for the
demand-side unobservables. A tight tolerance prevents numerical errors from the inner loop
from propagating to the outer loop. Third, I use the low-storage BFGS algorithm of NLOPT.
Fourth, I initialize the optimization routine from many different starting values to search for a
global minimum. Finally, I check first- and second-order conditions at the obtained minimum
to ensure the optimizer did not get stuck at a saddle point.

C.3 Estimation of the car supply side
With demand estimates in hand, I can derive implied markups and marginal costs. The vector
of parameters to be estimated is θs = (ψ, γ0, γ1). I let the baseline marginal cost depend on
several observed characteristics, such as the product’s weight, footprint, fuel efficiency, and
engine power measured in kilowatts. I also include year, firm, class, and body-fixed effects.
All remaining unobserved marginal cost-shifters are then collected in ωjt.

Remember that the marginal cost of range consists of an intercept and a linear time trend to
capture the decreasing cost of the lithium-ion cells that are a crucial input for the battery pack,
the size of which, in turn, is a primary determinant of range. Any unobserved, product-specific
cost of additional range is then captured by ηjt.

The first-order conditions in (10) and (11) can be solved for the pair of supply-side unob-
servable vectors ω and η. I then interact them with the instruments described in the previous
section to build moment conditions of the form E[zsjtωjt] = 0 and E[zsjtηjt] = 0. Letting ρjt =
(ωjt, ηjt) and stacking across products and markets, I then obtain the GMM objective function
to be minimized:

min
γ0,γ1

ρ(γ0, γ1)
′ZsW sZs′ρ(γ0, γ1),

where Zs contains the instruments and W s is a positive definite GMM weighting matrix. The
baseline marginal cost parameters ψ can be concentrated out of the minimization routine, much
like the linear mean tastes in the utility function. Note that the number of observations differs
on the demand and supply sides. As firms choose price and range at the national level, I have
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one national market per year t and not m state-level markets per year t on the supply side.
I take into account subsidies as outlined in equations (3)-(4). I do not consider rebates

granted by firms for two reasons: The first is that some firms granted larger rebates than they
had pledged. I do not observe these rebates. The second reason is that during the sample period,
firms also granted substantial rebates on gasoline and especially diesel cars, to a large extent in
response to the Volkswagen emissions scandal.37 The list prices net of government subsidies
can be seen as the maximum transaction price, as is the case in most of the literature estimating
demand and supply in new car markets.

C.4 Estimation of the charging station entry side
The estimation of the charging station side is straightforward. Once I obtain equation (8), I
estimate υ using two-stage least squares. In the estimation, I include national-level subsidies
and state-level subsidies. I set the national-level subsidies equal to AC 8,000. The vast majority
of stations (around 86.7%) in my sample received a subsidy of up to AC 3,000 for the installation
and of up to AC 5,000 for the connection to the grid. In the preferred specification, I also include
a linear time trend and state-level controls. In particular, I use the population density (which
varies across time) and the surface area of the state (which does not vary across time). I allow
the time trend to be different for the states of Berlin, Hamburg, and Bremen. These three
states are city-states in which the development of the EV market is likely to be very different
from other, less dense states. I also include a city–state dummy to control for unobserved
differences between these states and the other states. I also run an alternative specification in
which I replace these state-level controls with a state fixed effect, which I report along with
other robustness checks in Appendix Table A5. I use data from 2015 to 2021 to estimate the
station entry side. The reason for this choice is twofold. First, adding later years to the data set
offers more cross-sectional and temporal variation in state subsidies and the EV base. Second,
I only have information on gasoline and diesel prices starting in late 2014, so I cannot build the
gas price instrument for 2012 to 2014.

37https://www.handelsblatt.com/unternehmen/industrie/studie-zum-automarkt-wo-es-die-groessten-diesel-
rabatte-gibt/22682110.html?protected=true
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D Results under simultaneous moves
This section presents results for estimation and subsidy design when assuming a simultaneous
move game. In that case, firms just best respond to the charging station side, meaning that we
fall back to the standard market share derivatives with respect to price and range.

Table D1: Results under simultaneous moves

Demand/supply for cars Station entry

Coefficient SE Coefficient SE

Demand: Means
Range 2.274 (0.35) log(EV base) 0.707 (0.191)
Range x Trend -0.201 (0.034) National Subsidies 0.116 (0.021)
log(Charging Stations) 0.373 (0.079) Local Subsidies 0.022 (0.03)
Fuel Cost -0.564 (0.039)
BEV -10.037 (1.928)
PHEV -6.982 (1.824)

Demand: Obs. Heterogeneity
Price / Income -7.112 (0.648)

Demand: St. Dev.
BHEV 2.455 (0.891)
Range 0.326 (0.346)
Fuel Cost 0.267 (0.017)

Supply: Range provision
Intercept 1.171 (0.043)
Trend -0.100 (0.009)

Statistics
Mean own-price elasticity -4.043
Mean own-range elasticity (BEVs) 3.761
Mean markup (BEVs) 7.629

Note: Prices, subsidies deflated and in EUR 1,000. Vehicle class-, Body-, Firm-, Year- and State
Fixed Effects included on car demand- and supply side. Linear time trend and state demographics
are included on the station entry side.

Table D1 holds the estimation results. As outlined in Section 5, elasticities and markups
change. Also, the supply-side results change, even though we can see that they do so only
slightly. We still recover the drop in the marginal cost of providing range. Table D2 holds the
results for the grid search under simultaneous moves. Akin to Table 6, I report the subsidy
schemes that optimize different policy objectives, along with the observed scheme and the case
in which there are no subsidies. Table D2 suggests that the results are robust to using this
alternative timing assumption. Results in the simultaneous move game are similar to the ones
found in Section 6.2. The exact amounts of the subsidies, as well as the effects on range,
prices, and policy objectives, only change slightly. Overall, the conclusions we could draw
from Section 6.2 go through.

Table D2: Comparison of subsidy schemes (simultaneous moves)

Scheme Price Range Sales Stations CO2 CS TS

(0, 0, 0) 44,535 293 19,736 9,562 5,198,968 43,321 65,490

(2, 0, 8) -11,754 -34 +15,025 7,947 -6,763 +157 +254

(2.05, 0, 7.9) -11,794 -34 +15,186 +7,756 -6,833 +158 +256

(2.3, 0.3, 5.95) -13,761 -39 +16,384 +4,237 -7,356 +140 +229

(2.3, 0.2, 6.5) -13,719 -40 +16,391 +5,139 -7,318 +145 +237
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E Supply side: details
The first-order conditions in (3) and (4) can be expressed in matrix form. I use the index B
for battery electric vehicles and I for other vehicles. I let JB,JI denote the set of either type
of vehicle and JB, JI the number of either kind of vehicle on the market. I then define the
following matrices:

∆p : JxJ matrix with entry k, l =

{∑
m ϕmt

∂slmt

∂pkt
if k, l ∈ Jf

0 otherwise

∆B
r : JBxJB matrix with entry k, l =

{∑
m ϕmt

∂slmt

∂rkt
if k, l ∈ Jf and k, l ∈ JB

0 otherwise

∆I
r : JBxJI matrix with entry k, l =

{∑
m ϕmt

∂slmt

∂rkt
if k, l ∈ Jf , l ∈ JI and k ∈ JB

0 otherwise

The system of first-order conditions can then be expressed as
s+ (p+ λ−mc)∆p = 0 (10)

−∂mcB

∂rB
sB +∆B

r (p
B + λB −mcB) + ∆I

r(p
I + λI −mcI) = 0, (11)

where s is the vector of market shares, p is the vector of prices, λ the subsidy vector, mc
the marginal costs vector and r the vector of range levels. This expression makes apparent that
the introduction of a (flat) subsidy is equivalent to a marginal cost decrease from the viewpoint
of the firm.

Having a functional form for marginal costs allows me to express the equilibrium levels
of price and range in matrix form. Let c0 ≡ w′ψ + ω and c1 ≡ (γ0 + γ1t + η). Then, the
equilibrium price and range are

p = mc+∆−1
p s (12)

r =
1

c1
log

(∆B
r (p

B −mcB) + ∆I
r(p

I −mcI)

sBc1

)
− c0

c1
(13)

F Counterfactual details

F.1 Procedure
This section presents details on the counterfactual procedure.

Having estimates of price and range semi-elasticities, a system of first-order conditions
(FOCs) for prices and range levels, and an estimate of the marginal cost of providing range, as
well as the charging station entry equation, I can compute the new equilibrium vectors of price
and range and the new equilibrium entry of charging stations. I employ an iterative algorithm
to find this new equilibrium (p, r,d). I proceed as follows:

1. I start with a vector of prices pl, ranges rl, and charging stations dl.

2. Update price and range vectors. At iteration h,
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(a) Compute a new price vector using the price FOC given by equation (12). Take a
small step towards the simulated price vector: ph+1 = αp∗ + (1 − α)ph, with α
small.

(b) Update market shares and elasticities using ph+1, rh

(c) Compute a new range vector using the range FOCs given by equation (13). Take a
small step towards the simulated range vector: rh+1 = αr∗ + (1 − α)rh, with α
small.

(d) Update market shares and elasticities using ph+1, rh+1

(e) Let diffmax = max(diffhp , diffhr ), where diffhp = max |ph+1 − ph| and diffhr =
max |rh+1 − rh|. If diffmax ≥ ϵc with ϵc being some convergence criterion, go
back to step (a). If diffmax < ϵc, extract (ph+1, rh+1) to be the new equilibrium
vector of prices and range levels pl+1 and rl+1.

3. Update charging stations by iterating on equation (7) until convergence. Extract the new
charging station vector dl+1.

4. Compute difflmax = max(difflp, difflr), diffld). If difflmax >= ϵo, go back to step 2. If
difflmax < ϵo, pl+1, rl+1,dl+1 is the new equilibrium vector of prices, ranges, and charg-
ing stations.

I restrain the values that the range can take in counterfactuals. First, I put a floor of 100km,
which is the lowest range I observe for BEVs throughout the sample period. Second, I bound
range from above in the following way: First, I define c1min to be the lowest marginal cost of
providing range in 2018: c1min = minj∈JBEV,2018

(c1j). I then define the maximum attainable
range in 2018 for BEV j to be rmax,j ≡

(
log(mcj) − c0j

)
/(c1min × 1.2). I find that this

procedure converges to the same equilibrium vector of price levels, range levels, and charging
stations, even when I start from different starting values in different counterfactual settings. I
take this feature as a sign that a unique counterfactual equilibrium exists. Altering the ordering
of the price and range updating does not change the results, also giving me confidence that the
counterfactual results that I find are robust to the specific details of the algorithm and different
starting values. The fact that firms choose only the range of BEVs means that the number of
additional FOCs to iterate in addition to the price FOCs is small. This factor contributes to the
good convergence properties of the algorithms. I perform all counterfactuals for 2018.

F.2 Details on grid search
To find the budget-equivalent values for λ, I use the following procedure: At a given budget
B, I search for values of λ that satisfy the budget constraint. I employ a grid search where at
each candidate value λ̃, I solve for the counterfactual equilibrium vector of prices and ranges
as outlined in Appendix F and compute the total cost of the scheme. If the cost is either above
or below B, I discard the candidate value, and if the cost is equal to B (up to a small tolerance),
I keep it. For each candidate point, I compute the mean price and range of BEVs, the quantity
sold of BEVs, consumer surplus38, and fleet emissions. To calculate fleet emissions, I rely on
data that gives me the average distance driven by fuel type coming from a survey conducted by

38Consumer surplus is calculated using the log-sum formula: CSt =∑
m ϕmt

∑
i wi

log(1+
∑

j exp(δjmt+µijmt))

αi
.
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the German Federal Highway Research Institute (Bäumer, Hautzinger, Pfeiffer, Stock, Lenz,
Kuhnimhof, and Köhler, 2017).39

Note that in the computation of fleet emissions, I assume that BEVs’ CO2 emissions are
equal to zero. Obviously, this assumption is only valid if they run exclusively on electricity
generated from renewable sources. The assumption is unrealistic in a country such as Ger-
many, where an important part of electricity generation comes from CO2-intensive coal-fired
plants. However, there are three reasons why this approach is justified. The first is that it serves
as a useful benchmark since it measures the maximum amount by which fleet emissions can
decrease. The second is that the main reason why policymakers see electric vehicles as a key
instrument in making the transport sector emission-free is that electricity generation itself is
being decarbonized. Decarbonized electricity generation means that BEVs will eventually be
emission-free, making it a valuable benchmark to think of them as zero-emission vehicles. The
third reason is that assuming non-zero CO2 emissions from BEVs requires ad hoc assumptions
on the electricity mix used and driving behavior.

G The role of internalizing spillovers on price and range choices
In the estimation of the model, I find that ignoring indirect network effects leads to markups
that are 19% higher on average and that BEVs act as complements in both price and range. In
the first set of counterfactuals that I perform, I take a closer look at the relationship between
indirect network effects and firms’ price and range choices. In particular, I am interested in how
the complementarity between BEVs affects market outcomes. I consider two scenarios. In the
first scenario, I assume firms do not internalize the effect of their price and range choices on any
other EV, not even the EVs in their product portfolio. This scenario amounts to modifying the
matrices ∆p and ∆B

r in equations (10) and (11). Specifically, I set each entry (j, k), j ̸= k in
(10) and (11) to zero if row j and row k correspond to an EV. Note that doing so is different from
assuming single-product firms, as firms still internalize diverted sales towards their own firm’s
combustion cars. In the second scenario, I assume firms internalize the effects of their price
and range decisions on all other EVs in the market. This scenario also amounts to modifying
the matrices ∆p and ∆B

r in equations (10) and (11). Specifically, I set each entry (j, k) in
(10) and (11) to one if row j and row k correspond to an EV. Note that doing so is different
from assuming a complete merger to monopoly in the car market as firms still only internalize
diverted sales towards own-firm combustion cars and not towards combustion cars produced
by other firms. Given that the vast majority of new car sales still come from combustion cars
in 2018, assuming a full merger to monopoly would likely entail large coordinated effects that
would pollute the effect of merely assuming full internalization on rival firm EVs.

The results are in Table G1. We can see that in the scenario in which firms do not internalize
the effect of their price and range choices on any other EV (column ”No internalization”),
BEVs would, on average, be more expensive and have a higher range. Sales of BEVs would be
lower and fewer charging stations would enter. These results suggest that complementarities
in price and range choices lead to BEVs that are cheaper but also have a slightly lower range.
These cheaper, lower-range BEVs generate a large number of extra sales and also spur charging
station entry. On the other hand, we can see in the last column that when firms internalize the
effect of their price and range choices on all other EVs in the market, BEVs are, on average,
substantially cheaper and have a much lower range. However, these inexpensive, low-range

39I compute fleet emissions as
∑

j CO2j qj usagej , with CO2j being the CO2 emissions of car j, measured in
g/km, qj being the quantity sold of car j, and usagej the annual amount driven in km.
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Table G1: Market outcomes with different market structures

Data No internalization Full internalization

Price 34,782 +3,560 -5,687
(-1,639, +7,903) (-12,422, +3,674)

Range 259 +10 -27
(-13, +21) (-119, -4)

MC 21,774 +1,816 -2,836
(-1,287, +4,718) (-6,746, +2,027)

Markup 7,361 +1,176 -1,943
(-139, +2,065) (-3,924, +954)

Sales 34,761 -1,789 +10,930
(-5,073, +2,854) (-24, +37,137)

Stations 17,509 -208 +1,041
(-3,089, +4,880) (-1,854, +8,029)

Consumer Surplus 49,250 -29 +132
(-3,022, +4,078) (-2,931, +4,376)

CO2 emissions 5,192,205 +404 -2,806
(-1,510, +2,255) (-13,205, +1,232)

Note: Table gives differences to observed outcomes with 90% C.I. in parentheses. Prices, range
levels, marginal costs, markups, and sales are mean values across BEVs.

BEVs generate large additional sales and strong charging station entry. Overall, consumer
surplus would increase by around AC 200 million in this case. However, much of the increase
in consumer surplus comes from increased substitution from the outside option. The rest of
the consumer surplus increase comes from the fact that EVs become substantially cheaper, and
the fact that there are more charging stations available. Interestingly, firms have an incentive
to reduce the range of their cars when internalizing indirect network effects. One reason for
this may be that consumers have a relatively low willingness to pay for range. Another reason
is the indirect network effects at play: Reducing the price of BEVs induces more charging
station entry. This increase in charging stations makes it possible for firms to reduce range and
generate additional sales by further reducing the price. The indirect network effects strengthen
the incentives of firms to reduce price and range.

H Alternative model with range-charging station interaction
This section presents an alternative version of the demand and supply model where I allow for
an interaction term between EV driving range and charging stations. In order to identify this
interaction term, I include the natural logarithm of range (measured in km) in the demand. In
particular, the utility that consumer i enjoys from purchasing one of the products j = 1, . . . , J
is

uijmt = βb
iBEVj + βp

i PHEVj + βrlog(rjt) + βdlog(djmt) + βrdlog(rjt)log(djmt)︸ ︷︷ ︸
only EVs

−α pjt
yimt

+ xjmtβ
x
i + ξjmt + εijmt︸ ︷︷ ︸

all cars

,

Note that while range and charging stations are likely to be substitutes to some extent, the
ultimate extent to which this is the case will depend on an individual’s driving needs, their
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home and/or workplace charging availability, and other factors. Including an interaction term
between range and charging stations is, hence, a rather crude way of capturing the interactions
between these two variables.

The estimation results in Table H1 suggest that range and charging stations are substitutes,
with the valuation of range being a decreasing function of the number of charging stations
and vice versa. Introducing the log of charging stations has implications for the first-order
conditions and the estimates of c1, the term pre-multiplying range in the marginal cost function,
because the level of range is now measured in kilometers instead of 100 kilometers. However,
I obtain similar estimates of the marginal cost of providing range.

Table H1: Estimation results with interaction

Demand/supply for cars Station entry

Coefficient SE Coefficient SE

Demand: Means
log(Range) 1.877 (0.232) log(EV base) 0.707 (0.191)
log(Charging Stations) 0.555 (0.198) National Subsidies 0.116 (0.021)
log(Range) x log(Charging Stations) -0.100 (0.039) Local Subsidies 0.022 (0.030)
Fuel Cost -0.611 (0.039)
BEV -13.182 (2.923)
PHEV -10.940 (2.878)

Demand: Obs. Heterogeneity
Price / Income -7.352 (0.627)

Demand: St. Dev.
BHEV 1.466 (1.834)
Fuel Cost 0.289 (0.017)

Supply: Range provision
Intercept 0.00510 (0.00035)
Trend -0.00044 (0.00008)

Statistics
Mean own-price elasticity -4.163
Mean own-range elasticity (BEVs) 1.399
Mean markup (BEVs) 7.614

Note: Prices, subsidies deflated and in EUR 1,000. Vehicle class-, Body-, Firm-, Year- and State Fixed
Effects included on car demand- and supply side. Linear time trend and state demographics are included
on the station entry side.

In Table H2, we see that the trade-off between maximizing EV sales, maximizing consumer
and total surplus, and minimizing CO2 emissions persists. There are slight changes to the type
of subsidy schemes that optimize different policy goals. Instead of focusing on subsidizing
charging station entry, consumers now prefer a scheme that balances incentivizing charging
station entry and incentivizing range provision. The EV sales-maximizing scheme looks very
similar to the one in the main specification, with the policymaker having an incentive to focus
most of the spending on flat purchase subsidies. To minimize CO2 emissions, policymakers
should increase the flat part of the purchase subsidy and decrease the charging station subsidy.
Again, this scheme looks very similar to before. Overall, price and range adjustments are
less substantial compared to the model in the main part of the paper. This is because shifting
spending to purchase subsidies reduces charging station entry, which increases consumers’
willingness to pay for range and hence increases firms’ incentives to provide it, limiting the
scope for large range reductions and accompanying price reductions.

I Robustness to alternative corrections
Table I1 shows estimates of key demand parameters under different corrections for observations
with zero market shares. The column Min bias holds the results from the correction employed
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Table H2: Comparison of subsidy schemes: range-station interaction

Scheme Price Range Sales Stations CO2 CS TS

(0, 0, 0) 36035 249 25733 9570 5196956 43198 64748

(2, 0, 8) -3,253 -17 +9,028 +7,939 -4,751 +87 +183

(3.15, 0, 4) -4,358 +13 +14,656 +1,850 -7,374 +107 -55

(3.25, 0, 2.85) -4,388 +15 +15,062 +797 -7,530 +107 -57

(3.25, 0, 2.85) -4,388 +15 +15,062 +797 -7,530 +107 -57

in the paper that follows D’Haultfœuille et al. (2019). The second column (Laplace) uses a
correction based on Laplace’s rule of succession that is used in Gandhi, Lu, and Shi (2013). It
consists of replacing market shares by ˜sjmt =

Mmtsjmt+1

Mmtsjmt+Jmt+1
, with Jmt the number of products

in market mt. Finally, column 3 (Naive) uses a naive correction where quantities of zero sales
observations are assumed to be 1. We can see that the estimates barely differ across the different
corrections, leading me to conclude that the prevalence of zero sales does not pose a serious
threat in my estimation.

Table I1: Estimates of key parameters under alternative corrections for zero market shares

Min bias Laplace Naive

Mean Utility
Range 2.274 2.175 2.256

(0.350) (0.330) (0.340)
Range x Trend -0.201 -0.19 -0.193

(0.034) (0.032) (0.033)
Charging Stations 0.373 0.349 0.373

(0.079) (0.076) (0.078)
Fuel Cost -0.564 -0.552 -0.571

(0.039) (0.037) (0.038)
BEV -10.037 -9.626 -10.204

(1.928) (1.87) (1.921)
PHEV -6.982 -6.767 -7.229

(1.824) (1.772) (1.808)
Obs. Heterogeneity

Price / Income -7.112 -6.904 -7.263
(0.648) (0.608) (0.646)

Standard Dev.
BHEV 2.455 2.450 2.579

(0.891) (0.864) (0.861)
Range 0.326 0.299 0.303

(0.346) (0.349) (0.359)
Fuel Cost 0.267 0.262 0.269

(0.017) (0.016) (0.017)

Note: Standard errors in parentheses.

J Estimated price elasticities in selected papers
Table J1 presents estimates of price elasticities from several papers using a similar structural
model of demand to mine.
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Table J1: Estimated price elasticities of selected papers

Author(s) Price elasticity

Beresteanu and Li (2011) -10.91

Berry et al. (1995)1 -3.928

Berry et al. (1995)2 -3.461

Li (2023) -2.732

Klier and Linn (2012) -2.6

Pavan (2017) -2.85

Reynaert and Sallee (2021) -5.45

Springel (2021)3 [-1, -1.5]

Thurk (2018) -3.6

Grieco et al. (2024)4 -5.36

Own estimated price elasticity: -4.043
1 Conlon and Gortmaker (2020) replica-
tion
2 Conlon and Gortmaker (2020) own pro-
cedure
3 Range of elasticities for EVs
4 For 2015

K A model of quality provision

K.1 Monopoly
In this section, I outline a model of quality provision by a monopolist. This model helps
to understand the forces that determine how price and quality adjust to the introduction of a
subsidy or a decrease in the marginal cost of quality provision. Note that what I call quality in
this model can, in principle, be any product characteristic, such as driving range.

Set-up

Let us consider a monopolist who chooses price (p) and quality (q) of a single product sold
to final consumers.40 In my application, q would be the driving range of a car. The demand
function s(p, q) is increasing in quality, decreasing in price, and is twice differentiable. Cost
is an increasing function of quality and is denoted c(q)s(p, q). A social planner subsidizes
the product with a subsidy denoted by λ, possibly to increase the diffusion of the product.
This scheme mirrors the type of subsidy for electric vehicles employed in countries such as
Germany.

Quality choice

The monopolist maximizes its total profits given by π(p, q). His optimization problem is given
by

max
p,q

π(p, q) ≡ (p+ λ− c(q)) s(p, q)

40The set-up slightly differs from Spence (1975) and Sheshinski (1976) where the monopolist’s choice variables
are quality and quantity.
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and the first-order conditions of the monopolist are given by

[p]: πp ≡ s(p, q) + (p+ λ− c)
∂s(p, q)

∂p
= 0

[q]: πq ≡ −cqs(p, q) + (p+ λ− c)
∂s(p, q)

∂q
= 0.

For the price, we recover the standard optimal markup formula. For quality, the formula looks
similar. The firm faces a trade-off: It can increase quality to expand sales. However, doing so is
costly and leads to a smaller margin. To see how the monopolist chooses quality in equilibrium,
we can plug the price FOC into the quality FOC and re-arrange to find

cq =
∂s(p, q)/∂q

|∂s(p, q)/∂p|
, (14)

where cq is the marginal cost of providing quality ∂c(q)
∂q

The monopolist sets quality such that the
marginal cost of providing quality is equal to the absolute value of the ratio of semi-elasticities
of quality and price. The larger the fraction on the right-hand side of equation (14), the larger
the level of quality provided in equilibrium.

The effect of a subsidy

What happens when the policymaker introduces a subsidy? If quality cannot adjust, we expect
the monopolist to pass on the subsidy by lowering the price. The extent of this pass-through
depends on the curvature of the demand curve. The more elastic the demand curve, the higher
the amount of pass-through. If both the price and quality can adjust, there is no clear-cut answer
to how the monopolist will react. Differentiating the system of first–order conditions gives[

dp
dλ
dq
dλ

]
=

[
πpp πpq
πpq πqq

]−1 [−πpλ
−πqλ

]
,

where πmn denotes the second order derivative of the monopolist’s profit function with respect
to m and n, with m,n ∈ {p, q} and where

πpp = 2sp + spp(p+ λ− c)

πqq = −cqqs− 2cqsq + sqq(p+ λ− c)

πpq = sq + (p+ λ− c)spq − cqsp

πpλ = sp, πqλ = sq.

This gives

dp

dλ
=

1

∆

(
πpqπqλ − πqqπpλ

)
dq

dλ
=

1

∆

(
πpqπpλ − πppπqλ

)
,

where ∆ ≡ πppπqq − π2
pq > 0 from the second order conditions of having a global maximum.

The SOCs further require πpp < 0 and πqq < 0. Note that we also have πpλ < 0 and πqλ > 0.
If πpq < 0, meaning price and quality are strategic substitutes, we have dp

dλ
< 0 and dq

dλ
> 0.
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In the case where πpq > 0, things become more ambiguous. Note that we can write

dp

dλ
=

1

∆

(
πpqsq − πqqsp

)
dq

dλ
=

1

∆

(
πpqsp − πppsq

)
,

We can then conclude that

sign
(dp
dλ

)
= sign

( ∣∣∣∣ sqπqq
∣∣∣∣− ∣∣∣∣ spπpq

∣∣∣∣ )
sign

(dq
dλ

)
= sign

( ∣∣∣∣ spπpp
∣∣∣∣− ∣∣∣∣ sqπpq

∣∣∣∣ )
The effect of a subsidy on quality and price depends on the relative magnitudes of the price and
quality semi-elasticities, sp and sq, and the marginal cost of providing quality cq. Moreover,
we can rule out the case πpλ > 0 and πqλ < 0. To see see why, note that this case would imply
πpq

πpp
< sq

sp
< πqq

πpq
which violates the second order conditions.

K.2 Multi-product oligopoly
In this section, I show how the main insights obtained in the monopoly case generalize to a
multi-product oligopoly setting. The fact that there are cannibalization effects within a firm’s
product portfolio and the fact that products are differentiated within and across the product
portfolio will influence the effect of a subsidy on price and quality but not alter the main con-
clusions. To see why, let us consider the following setting: There are j = 1, . . . J products
in a market. Consumers care about the quality of a subset of products j ∈ B and do not have
any preferences over the quality of the remaining products j ∈ I.41 The social planner puts a
subsidy on products in B but not on those in I. Let us look at the firm f ’s profit maximization
problem:

max
pf ,qf

πf =
∑

k∈Jf∩k∈B

(pk + λ− c(qk))sk(p, q) +
∑

l∈Jf∩k∈I

(pl − c(ql))sl(p, q),

where pf and qf denote the own-firm vectors of price and quality, respectively, p and q are the
price and quality vectors of all firms in the market, and Jf is the portfolio of firm-f products.

41Think of the market for cars: The range of electric cars is a proxy for quality and costly to provide. Consumers
do not care about the range of diesel or gasoline cars as it is sufficiently high, and firms do not give it first-order
importance when making strategic decisions.
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The FOCs for product one are then given by

[p1]: πfp1 ≡

s1 +
∑

k∈Jf∩k∈B

(pk + λ− c(qk))
∂sk
∂p1

+
∑

l∈Jf∩k∈I

(pl − c(ql))
∂sl
∂p1

= 0

[q1]: πfq1 ≡

− cq1s1 +
∑

k∈Jf∩k∈B

(pk + λ− c(qk))
∂sk
∂q1

+
∑

l∈Jf∩k∈I

(pl − c(ql))
∂sl
∂q1

= 0

The second-order derivatives of the profit function will depend not only on the effect of own
price and quality on own demand but also on the demand of the other own-firm products.
Finally, they depend on rival product prices and quantities through the demand function.

Increase of subsidy for a single product

In the case where the subsidy is only increased for a single product, say product 1, we get

dp1
dλ

=
1

∆

(
πfp1q1πfq1λ − πfq1q1πfp1λ

)
dq1
dλ

=
1

∆

(
πfp1q1πfp1λ − πfp1p1πfq1λ

)
,

meaning that the general results from the previous section go through: The signs of dp1
dλ
, dq1
dλ

depend on whether p, q are strategic substitutes or complements. They also still depend on the
marginal cost of providing quality as well as the relative magnitudes of πfp1λ and πfq1λ that
themselves still depend on sp and sq.

Increase in the subsidy for all products in B
Things become more complicated when we consider an increase in the subsidy of all products
in B. We now need to differentiate J + JB first–order conditions (JB being the cardinality of
B). In essence, the effect of price and quality on the FOC of all other products now needs to be
taken into account as well.
Let J denote the cardinality of all products, JB the cardinality of those products with endoge-
nous quality and f(j) the firm of product j. Then, we have the following system of FOCs with
J + Jq equations:

[p1]: πf(1)p1 ≡ s1 +
∑

k∈Jf(1)∩k∈B
(pk + λ− ck)

∂sk

∂p1
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂sl

∂p1
= 0

...

[pJ ]: πf(J)pJ
≡ sJ +

∑
k∈Jf(1)∩k∈B

(pk + λ− ck)
∂sk

∂pJ
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂sl

∂pJ
= 0

[q1]: πf(1)q1 ≡ −cq1s1 +
∑

k∈Jf(1)∩k∈B
(pk + λ− ck)

∂sk

∂q1
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂sl

∂q1
= 0

...

[qJB ]: πf(JB)qJB
≡ −cqJB

sJB +
∑

k∈Jf(JB)∩k∈B
(pk + λ− ck)

∂sk

∂qJB

+
∑

l∈Jf(J)∩l∈I
(pl − cl)

∂sl

∂qJB

= 0
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The total differentiation of this system yields



dp1
dλ
...

dpJ
dλ
dq1
dλ
...

dqJB
dλ


=



πf(1)p1p1 . . . πf(J)pJp1 πf(1)q1p1 . . . πf(JB)qJBp1

...
...

...
...

πf(1)p1pJ
. . . πf(J)pJpJ

πf(1)q1pJ
. . . πf(JB)qJBpJ

πf(1)p1q1 . . . πf(J)pJq1 πf(1)q1q1 . . . πf(JB)qJB q1

...
...

...
...

πf(1)p1qJB
. . . πf(J)pJqJB

πf(1)q1qJB
. . . πf(JB)qJB qJB



−1 

−πf(1)p1λ

...
−πf(J)pJλ

−πf(1)q1λ

...
−πf(JB)qJBλ


, (15)

where, for instance,

• πf(1)p1p1 = 2
∂s1

∂p1
+

∑
k∈Jf(1)∩k∈B

(pk + λ− ck)
∂2sk

∂p21
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂p21

• πf(J)pJp1 =
∂sJ

∂p1
+

∂sJ

∂p1
1{1,J∈f(J)}+

∑
k∈Jf(J)∩k∈B

(pk + λ− ck)
∂2sk

∂pJ∂p1
+

∑
l∈Jf(J)∩l∈I

(pl − cl)
∂2sl

∂pJ∂p1

• πf(1)p1q1 = −cq1
∂s1

∂p1
+

∂s1

∂q1
+

∑
k∈Jf(1)∩k∈B

(pk + λ− ck)
∂2sk

∂p1∂q1
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂p1∂q1

• πf(1)p1qJB
= −cqJB

∂sJB

∂p1
1{1,JB∈f(1)}+

∂s1

∂qJB

+
∑

k∈Jf(1)∩k∈B
(pk + λ− ck)

∂2sk

∂p1∂qJB

+
∑

l∈Jf(1)∩l∈I
(pl − cl)

∂2sl

∂p1∂qJB

• πf(1)q1q1 = −cq1q1s1 − 2cq1
∂s1

∂q1
+

∑
k∈Jf(1)∩k∈B

(pk + λ− ck)
∂2sk

∂q21
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂q21

• πf(1)q1qJB
= −cqJB

∂sJB

∂q1
1{1,JB∈Jf} − cq1

∂s1

∂qJB

+
∑

k∈Jf(1)∩k∈B
(pk + λ− ck)

∂2sk

∂q1∂qJB

+
∑

l∈Jf(1)∩l∈I
(pl − cl)

∂2sl

∂q1∂qJB

• πp1λ =
∑

k∈Jf(1)∩k∈B

∂sk

∂p1

• πq1λ =
∑

k∈Jf(1)∩k∈B

∂sk

∂q1

It is no longer possible to simply pin down the effects of the subsidy on whether or not p, q
are strategic complements, nor on the relative magnitudes of πfp1λ and πfq1λ and the marginal
cost of providing quality. First off, however, the entries πfpjpj and πfqjqj in the matrix to be
inverted in 15 are likely to dominate the entries πfpjpk and πfqjqk , k ̸= j. Hence, the signs and
magnitudes of these own second-order derivatives will play an important role in determining
the effect of the subsidy. Secondly, the system in 15, while too opaque to be solved analytically,
can be solved numerically if estimated profits and semi-elasticities can be recovered and prices
as well as qualities are known. I can do so in my empirical setting below. In principle, this
system can also be obtained to measure the pass-through of a change in marginal cost. The
difference is then that the system of first–order conditions will be differentiated with respect
to the change in marginal cost. Finally, one can use this framework to analyze the case where
several multi-product firms produce products with endogenous quality that are subsidized and
products with fixed quality that are not subsidized. Note that a similar system can be obtained
to analyze the pass-through of a shock to the marginal cost of providing quality.
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